QP_ANmixtao / modules /callbacks.py
zhengr's picture
First version
19dc0f3
raw
history blame
2.61 kB
import gc
import traceback
from queue import Queue
from threading import Thread
import torch
import transformers
from transformers import is_torch_npu_available, is_torch_xpu_available
import modules.shared as shared
class StopNowException(Exception):
pass
class _StopEverythingStoppingCriteria(transformers.StoppingCriteria):
def __init__(self):
transformers.StoppingCriteria.__init__(self)
def __call__(self, input_ids: torch.LongTensor, _scores: torch.FloatTensor) -> bool:
return shared.stop_everything
class Stream(transformers.StoppingCriteria):
def __init__(self, callback_func=None):
self.callback_func = callback_func
def __call__(self, input_ids, scores) -> bool:
if self.callback_func is not None:
self.callback_func(input_ids[0])
return False
class Iteratorize:
"""
Transforms a function that takes a callback
into a lazy iterator (generator).
Adapted from: https://stackoverflow.com/a/9969000
"""
def __init__(self, func, args=None, kwargs=None, callback=None):
self.mfunc = func
self.c_callback = callback
self.q = Queue()
self.sentinel = object()
self.args = args or []
self.kwargs = kwargs or {}
self.stop_now = False
def _callback(val):
if self.stop_now or shared.stop_everything:
raise StopNowException
self.q.put(val)
def gentask():
try:
ret = self.mfunc(callback=_callback, *args, **self.kwargs)
except StopNowException:
pass
except:
traceback.print_exc()
pass
clear_torch_cache()
self.q.put(self.sentinel)
if self.c_callback:
self.c_callback(ret)
self.thread = Thread(target=gentask)
self.thread.start()
def __iter__(self):
return self
def __next__(self):
obj = self.q.get(True, None)
if obj is self.sentinel:
raise StopIteration
else:
return obj
def __del__(self):
clear_torch_cache()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.stop_now = True
clear_torch_cache()
def clear_torch_cache():
gc.collect()
if not shared.args.cpu:
if is_torch_xpu_available():
torch.xpu.empty_cache()
elif is_torch_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()