QP_ANmixtao / extensions /silero_tts /tts_preprocessor.py
zhengr's picture
First version
19dc0f3
raw
history blame
6.2 kB
import re
from num2words import num2words
punctuation = r'[\s,.?!/)\'\]>]'
alphabet_map = {
"A": " Ei ",
"B": " Bee ",
"C": " See ",
"D": " Dee ",
"E": " Eee ",
"F": " Eff ",
"G": " Jee ",
"H": " Eich ",
"I": " Eye ",
"J": " Jay ",
"K": " Kay ",
"L": " El ",
"M": " Emm ",
"N": " Enn ",
"O": " Ohh ",
"P": " Pee ",
"Q": " Queue ",
"R": " Are ",
"S": " Ess ",
"T": " Tee ",
"U": " You ",
"V": " Vee ",
"W": " Double You ",
"X": " Ex ",
"Y": " Why ",
"Z": " Zed " # Zed is weird, as I (da3dsoul) am American, but most of the voice models sound British, so it matches
}
def preprocess(string):
# the order for some of these matter
# For example, you need to remove the commas in numbers before expanding them
string = remove_surrounded_chars(string)
string = string.replace('"', '')
string = string.replace('\u201D', '').replace('\u201C', '') # right and left quote
string = string.replace('\u201F', '') # italic looking quote
string = string.replace('\n', ' ')
string = convert_num_locale(string)
string = replace_negative(string)
string = replace_roman(string)
string = hyphen_range_to(string)
string = num_to_words(string)
# TODO Try to use a ML predictor to expand abbreviations. It's hard, dependent on context, and whether to actually
# try to say the abbreviation or spell it out as I've done below is not agreed upon
# For now, expand abbreviations to pronunciations
# replace_abbreviations adds a lot of unnecessary whitespace to ensure separation
string = replace_abbreviations(string)
string = replace_lowercase_abbreviations(string)
# cleanup whitespaces
# remove whitespace before punctuation
string = re.sub(rf'\s+({punctuation})', r'\1', string)
string = string.strip()
# compact whitespace
string = ' '.join(string.split())
return string
def remove_surrounded_chars(string):
# first this expression will check if there is a string nested exclusively between a alt=
# and a style= string. This would correspond to only a the alt text of an embedded image
# If it matches it will only keep that part as the string, and rend it for further processing
# Afterwards this expression matches to 'as few symbols as possible (0 upwards) between any
# asterisks' OR' as few symbols as possible (0 upwards) between an asterisk and the end of the string'
if re.search(r'(?<=alt=)(.*)(?=style=)', string, re.DOTALL):
m = re.search(r'(?<=alt=)(.*)(?=style=)', string, re.DOTALL)
string = m.group(0)
return re.sub(r'\*[^*]*?(\*|$)', '', string)
def convert_num_locale(text):
# This detects locale and converts it to American without comma separators
pattern = re.compile(r'(?:\s|^)\d{1,3}(?:\.\d{3})+(,\d+)(?:\s|$)')
result = text
while True:
match = pattern.search(result)
if match is None:
break
start = match.start()
end = match.end()
result = result[0:start] + result[start:end].replace('.', '').replace(',', '.') + result[end:len(result)]
# removes comma separators from existing American numbers
pattern = re.compile(r'(\d),(\d)')
result = pattern.sub(r'\1\2', result)
return result
def replace_negative(string):
# handles situations like -5. -5 would become negative 5, which would then be expanded to negative five
return re.sub(rf'(\s)(-)(\d+)({punctuation})', r'\1negative \3\4', string)
def replace_roman(string):
# find a string of roman numerals.
# Only 2 or more, to avoid capturing I and single character abbreviations, like names
pattern = re.compile(rf'\s[IVXLCDM]{{2,}}{punctuation}')
result = string
while True:
match = pattern.search(result)
if match is None:
break
start = match.start()
end = match.end()
result = result[0:start + 1] + str(roman_to_int(result[start + 1:end - 1])) + result[end - 1:len(result)]
return result
def roman_to_int(s):
rom_val = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
int_val = 0
for i in range(len(s)):
if i > 0 and rom_val[s[i]] > rom_val[s[i - 1]]:
int_val += rom_val[s[i]] - 2 * rom_val[s[i - 1]]
else:
int_val += rom_val[s[i]]
return int_val
def hyphen_range_to(text):
pattern = re.compile(r'(\d+)[-–](\d+)')
result = pattern.sub(lambda x: x.group(1) + ' to ' + x.group(2), text)
return result
def num_to_words(text):
# 1000 or 10.23
pattern = re.compile(r'\d+\.\d+|\d+')
result = pattern.sub(lambda x: num2words(float(x.group())), text)
return result
def replace_abbreviations(string):
# abbreviations 1 to 4 characters long. It will get things like A and I, but those are pronounced with their letter
pattern = re.compile(rf'(^|[\s(.\'\[<])([A-Z]{{1,4}})({punctuation}|$)')
result = string
while True:
match = pattern.search(result)
if match is None:
break
start = match.start()
end = match.end()
result = result[0:start] + replace_abbreviation(result[start:end]) + result[end:len(result)]
return result
def replace_lowercase_abbreviations(string):
# abbreviations 1 to 4 characters long, separated by dots i.e. e.g.
pattern = re.compile(rf'(^|[\s(.\'\[<])(([a-z]\.){{1,4}})({punctuation}|$)')
result = string
while True:
match = pattern.search(result)
if match is None:
break
start = match.start()
end = match.end()
result = result[0:start] + replace_abbreviation(result[start:end].upper()) + result[end:len(result)]
return result
def replace_abbreviation(string):
result = ""
for char in string:
result += match_mapping(char)
return result
def match_mapping(char):
for mapping in alphabet_map.keys():
if char == mapping:
return alphabet_map[char]
return char
def __main__(args):
print(preprocess(args[1]))
if __name__ == "__main__":
import sys
__main__(sys.argv)