Update app.py
Browse files
app.py
CHANGED
@@ -14,11 +14,27 @@ import time
|
|
14 |
huggingfacehub_api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
15 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# Set environment variables for Hugging Face
|
18 |
os.environ['HUGGINGFACEHUB_API_TOKEN'] = huggingfacehub_api_token
|
19 |
|
20 |
# Initialize the ChatGroq LLM with the retrieved API key
|
21 |
-
|
|
|
|
|
|
|
|
|
22 |
|
23 |
st.title("DataScience Chatgroq With Llama3")
|
24 |
|
@@ -41,23 +57,31 @@ def vector_embedding():
|
|
41 |
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) # Chunk Creation
|
42 |
st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs[:20]) # Splitting
|
43 |
st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings) # Vector HuggingFace embeddings
|
|
|
|
|
|
|
44 |
|
45 |
prompt1 = st.text_input("Enter Your Question From Documents")
|
46 |
|
47 |
if st.button("Documents Embedding"):
|
48 |
vector_embedding()
|
49 |
-
st.write("Vector Store DB Is Ready")
|
50 |
|
51 |
if prompt1:
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
st.write(
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
huggingfacehub_api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
15 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
16 |
|
17 |
+
# Debugging: Print the API keys to ensure they are being retrieved (remove these prints in production)
|
18 |
+
st.write("Hugging Face Hub API Token:", huggingfacehub_api_token)
|
19 |
+
st.write("GROQ API Key:", groq_api_key)
|
20 |
+
|
21 |
+
# Check if the keys are retrieved correctly
|
22 |
+
if not huggingfacehub_api_token:
|
23 |
+
st.error("HUGGINGFACEHUB_API_TOKEN environment variable is not set")
|
24 |
+
st.stop()
|
25 |
+
if not groq_api_key:
|
26 |
+
st.error("GROQ_API_KEY environment variable is not set")
|
27 |
+
st.stop()
|
28 |
+
|
29 |
# Set environment variables for Hugging Face
|
30 |
os.environ['HUGGINGFACEHUB_API_TOKEN'] = huggingfacehub_api_token
|
31 |
|
32 |
# Initialize the ChatGroq LLM with the retrieved API key
|
33 |
+
try:
|
34 |
+
llm = ChatGroq(api_key=groq_api_key, model_name="Llama3-8b-8192")
|
35 |
+
except Exception as e:
|
36 |
+
st.error(f"Failed to initialize ChatGroq LLM: {e}")
|
37 |
+
st.stop()
|
38 |
|
39 |
st.title("DataScience Chatgroq With Llama3")
|
40 |
|
|
|
57 |
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) # Chunk Creation
|
58 |
st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs[:20]) # Splitting
|
59 |
st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings) # Vector HuggingFace embeddings
|
60 |
+
st.write("Vector Store DB Is Ready")
|
61 |
+
else:
|
62 |
+
st.write("Vectors already initialized.")
|
63 |
|
64 |
prompt1 = st.text_input("Enter Your Question From Documents")
|
65 |
|
66 |
if st.button("Documents Embedding"):
|
67 |
vector_embedding()
|
|
|
68 |
|
69 |
if prompt1:
|
70 |
+
if "vectors" not in st.session_state:
|
71 |
+
st.error("Vectors are not initialized. Please click 'Documents Embedding' first.")
|
72 |
+
else:
|
73 |
+
document_chain = create_stuff_documents_chain(llm, prompt)
|
74 |
+
retriever = st.session_state.vectors.as_retriever()
|
75 |
+
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
76 |
+
try:
|
77 |
+
start = time.process_time()
|
78 |
+
response = retrieval_chain.invoke({'input': prompt1})
|
79 |
+
st.write("Response time: ", time.process_time() - start)
|
80 |
+
st.write(response['answer'])
|
81 |
+
|
82 |
+
with st.expander("Document Similarity Search"):
|
83 |
+
for i, doc in enumerate(response["context"]):
|
84 |
+
st.write(doc.page_content)
|
85 |
+
st.write("--------------------------------")
|
86 |
+
except Exception as e:
|
87 |
+
st.error(f"Failed to retrieve the answer: {e}")
|