cogVLM / app.py
Nishgop's picture
Update app.py
c1e62b8 verified
raw
history blame
9.16 kB
#!/usr/bin/env python
import gradio as gr
import os
import json
import requests
import time
from concurrent.futures import ThreadPoolExecutor
from utils import is_chinese, process_image_without_resize, parse_response, templates_agent_cogagent, template_grounding_cogvlm, postprocess_text
DESCRIPTION = '''<h2 style='text-align: center'> <a href="https://github.com/THUDM/CogVLM"> CogVLM & CogAgent Chat Demo</a> </h2>'''
NOTES = 'This app is adapted from <a href="https://github.com/THUDM/CogVLM">https://github.com/THUDM/CogVLM</a>. It would be recommended to check out the repo if you want to see the detail of our model.\n\n该demo仅作为测试使用,不支持批量请求。如有大批量需求,欢迎联系[智谱AI](mailto:business@zhipuai.cn)。\n\n请注意该Demo目前仅支持英文,<a href="http://36.103.203.44:7861/">备用网页</a>支持中文。'
MAINTENANCE_NOTICE1 = 'Hint 1: If the app report "Something went wrong, connection error out", please turn off your proxy and retry.<br>Hint 2: If you upload a large size of image like 10MB, it may take some time to upload and process. Please be patient and wait.'
GROUNDING_NOTICE = 'Hint: When you check "Grounding", please use the <a href="https://github.com/THUDM/CogVLM/blob/main/utils/utils/template.py#L344">corresponding prompt</a> or the examples below.'
AGENT_NOTICE = 'Hint: When you check "CogAgent", please use the <a href="https://github.com/THUDM/CogVLM/blob/main/utils/utils/template.py#L761C1-L761C17">corresponding prompt</a> or the examples below.'
default_chatbox = [("", "Hi, What do you want to know about this image?")]
URL = os.environ.get("URL")
def make_request(URL, headers, data):
response = requests.request("POST", URL, headers=headers, data=data, timeout=(60, 100))
return response.json()
def post(
input_text,
temperature,
top_p,
top_k,
image_prompt,
result_previous,
hidden_image,
grounding,
cogagent,
grounding_template,
agent_template
):
result_text = [(ele[0], ele[1]) for ele in result_previous]
for i in range(len(result_text)-1, -1, -1):
if result_text[i][0] == "" or result_text[i][0] == None:
del result_text[i]
print(f"history {result_text}")
is_zh = is_chinese(input_text)
if image_prompt is None:
print("Image empty")
if is_zh:
result_text.append((input_text, '图片为空!请上传图片并重试。'))
else:
result_text.append((input_text, 'Image empty! Please upload a image and retry.'))
return input_text, result_text, hidden_image
elif input_text == "":
print("Text empty")
result_text.append((input_text, 'Text empty! Please enter text and retry.'))
return "", result_text, hidden_image
headers = {
"Content-Type": "application/json; charset=UTF-8",
"User-Agent": "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.87 Safari/537.36",
}
if image_prompt:
pil_img, encoded_img, image_hash, image_path_grounding = process_image_without_resize(image_prompt)
print(f"image_hash:{image_hash}, hidden_image_hash:{hidden_image}")
if hidden_image is not None and image_hash != hidden_image:
print("image has been update")
result_text = []
hidden_image = image_hash
else:
encoded_img = None
model_use = "vlm_chat"
if not cogagent and grounding:
model_use = "vlm_grounding"
if grounding_template:
input_text = postprocess_text(grounding_template, input_text)
elif cogagent:
model_use = "agent_chat"
if agent_template is not None and agent_template != "do not use template":
input_text = postprocess_text(agent_template, input_text)
prompt = input_text
if grounding:
prompt += "(with grounding)"
print(f'request {model_use} model... with prompt {prompt}, grounding_template {grounding_template}, agent_template {agent_template}')
data = json.dumps({
'model_use': model_use,
'is_grounding': grounding,
'text': prompt,
'history': result_text,
'image': encoded_img,
'temperature': temperature,
'top_p': top_p,
'top_k': top_k,
'do_sample': True,
'max_new_tokens': 2048
})
try:
with ThreadPoolExecutor(max_workers=1) as executor:
future = executor.submit(make_request, URL, headers, data)
# time.sleep(15)
response = future.result() # Blocks until the request is complete
# response = requests.request("POST", URL, headers=headers, data=data, timeout=(60, 100)).json()
except Exception as e:
print("error message", e)
if is_zh:
result_text.append((input_text, '超时!请稍等几分钟再重试。'))
else:
result_text.append((input_text, 'Timeout! Please wait a few minutes and retry.'))
return "", result_text, hidden_image
print('request done...')
# response = {'result':input_text}
answer = str(response['result'])
if grounding:
parse_response(pil_img, answer, image_path_grounding)
new_answer = answer.replace(input_text, "")
result_text.append((input_text, new_answer))
result_text.append((None, (image_path_grounding,)))
else:
result_text.append((input_text, answer))
print(result_text)
print('finished')
return "", result_text, hidden_image
def clear_fn(value):
return "", default_chatbox, None
def clear_fn2(value):
return default_chatbox
def main():
gr.close_all()
examples = []
with open("./examples/example_inputs.jsonl") as f:
for line in f:
data = json.loads(line)
examples.append(data)
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
gr.Markdown(NOTES)
with gr.Row():
with gr.Column(scale=4.5):
with gr.Group():
input_text = gr.Textbox(label='Input Text', placeholder='Please enter text prompt below and press ENTER.')
with gr.Row():
run_button = gr.Button('Generate')
clear_button = gr.Button('Clear')
image_prompt = gr.Image(type="filepath", label="Image Prompt", value=None)
with gr.Row():
grounding = gr.Checkbox(label="Grounding")
cogagent = gr.Checkbox(label="CogAgent")
with gr.Row():
# grounding_notice = gr.Markdown(GROUNDING_NOTICE)
grounding_template = gr.Dropdown(choices=template_grounding_cogvlm, label="Grounding Template", value=template_grounding_cogvlm[0])
# agent_notice = gr.Markdown(AGENT_NOTICE)
agent_template = gr.Dropdown(choices=templates_agent_cogagent, label="Agent Template", value=templates_agent_cogagent[0])
with gr.Row():
temperature = gr.Slider(maximum=1, value=0.9, minimum=0, label='Temperature')
top_p = gr.Slider(maximum=1, value=0.8, minimum=0, label='Top P')
top_k = gr.Slider(maximum=50, value=5, minimum=1, step=1, label='Top K')
with gr.Column(scale=5.5):
result_text = gr.components.Chatbot(label='Multi-round conversation History', value=[("", "Hi, What do you want to know about this image?")], height=550)
hidden_image_hash = gr.Textbox(visible=False)
gr_examples = gr.Examples(examples=[[example["text"], example["image"], example["grounding"], example["cogagent"]] for example in examples],
inputs=[input_text, image_prompt, grounding, cogagent],
label="Example Inputs (Click to insert an examplet into the input box)",
examples_per_page=6)
gr.Markdown(MAINTENANCE_NOTICE1)
print(gr.__version__)
run_button.click(fn=post,inputs=[input_text, temperature, top_p, top_k, image_prompt, result_text, hidden_image_hash, grounding, cogagent, grounding_template, agent_template],
outputs=[input_text, result_text, hidden_image_hash])
input_text.submit(fn=post,inputs=[input_text, temperature, top_p, top_k, image_prompt, result_text, hidden_image_hash, grounding, cogagent, grounding_template, agent_template],
outputs=[input_text, result_text, hidden_image_hash])
clear_button.click(fn=clear_fn, inputs=clear_button, outputs=[input_text, result_text, image_prompt])
image_prompt.upload(fn=clear_fn2, inputs=clear_button, outputs=[result_text])
image_prompt.clear(fn=clear_fn2, inputs=clear_button, outputs=[result_text])
print(gr.__version__)
demo.queue(concurrency_count=10)
demo.launch()
if __name__ == '__main__':
main()