|
import torch
|
|
from abc import ABC, abstractmethod
|
|
from typing import List, Optional, Tuple
|
|
from torch import Tensor
|
|
from torch.nn.utils.rnn import pad_sequence
|
|
|
|
|
|
class BaseTokenizer(ABC):
|
|
|
|
def __init__(self, charset: str, specials_first: tuple = (), specials_last: tuple = ()) -> None:
|
|
self._itos = specials_first + tuple(charset + '[UNK]') + specials_last
|
|
self._stoi = {s: i for i, s in enumerate(self._itos)}
|
|
|
|
def __len__(self):
|
|
return len(self._itos)
|
|
|
|
def _tok2ids(self, tokens: str) -> List[int]:
|
|
return [self._stoi[s] for s in tokens]
|
|
|
|
def _ids2tok(self, token_ids: List[int], join: bool = True) -> str:
|
|
tokens = [self._itos[i] for i in token_ids]
|
|
return ''.join(tokens) if join else tokens
|
|
|
|
@abstractmethod
|
|
def encode(self, labels: List[str], device: Optional[torch.device] = None) -> Tensor:
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def _filter(self, probs: Tensor, ids: Tensor) -> Tuple[Tensor, List[int]]:
|
|
"""Internal method which performs the necessary filtering prior to decoding."""
|
|
raise NotImplementedError
|
|
|
|
def decode(self, token_dists: Tensor, beam_width: int = 1, raw: bool = False) -> Tuple[List[str], List[Tensor]]:
|
|
if beam_width > 1:
|
|
return self.beam_search_decode(token_dists, beam_width, raw)
|
|
else:
|
|
return self.greedy_decode(token_dists, raw)
|
|
|
|
def greedy_decode(self, token_dists: Tensor, raw: bool = False) -> Tuple[List[str], List[Tensor]]:
|
|
batch_tokens = []
|
|
batch_probs = []
|
|
for dist in token_dists:
|
|
probs, ids = dist.max(-1)
|
|
if not raw:
|
|
probs, ids = self._filter(probs, ids)
|
|
tokens = self._ids2tok(ids, not raw)
|
|
batch_tokens.append(tokens)
|
|
batch_probs.append(probs)
|
|
return batch_tokens, batch_probs
|
|
|
|
def beam_search_decode(self, token_dists: Tensor, beam_width: int, raw: bool) -> Tuple[List[str], List[Tensor]]:
|
|
batch_tokens = []
|
|
batch_probs = []
|
|
|
|
for dist in token_dists:
|
|
sequences = [([], 1.0)]
|
|
for step_dist in dist:
|
|
all_candidates = []
|
|
for seq, score in sequences:
|
|
top_probs, top_ids = step_dist.topk(beam_width)
|
|
for i in range(beam_width):
|
|
candidate = (seq + [top_ids[i].item()],
|
|
score * top_probs[i].item())
|
|
all_candidates.append(candidate)
|
|
ordered = sorted(all_candidates, key=lambda x: x[1], reverse=True)
|
|
sequences = ordered[:beam_width]
|
|
|
|
best_sequence, best_score = sequences[0]
|
|
if not raw:
|
|
best_score_tensor = torch.tensor([best_score])
|
|
best_sequence_tensor = torch.tensor(best_sequence)
|
|
best_score_tensor, best_sequence = self._filter(
|
|
best_score_tensor, best_sequence_tensor)
|
|
best_score = best_score_tensor.item()
|
|
tokens = self._ids2tok(best_sequence, not raw)
|
|
batch_tokens.append(tokens)
|
|
batch_probs.append(best_score)
|
|
|
|
return batch_tokens, batch_probs
|
|
|
|
|
|
class Tokenizer(BaseTokenizer):
|
|
BOS = '[B]'
|
|
EOS = '[E]'
|
|
PAD = '[P]'
|
|
|
|
def __init__(self, charset: str) -> None:
|
|
specials_first = (self.EOS,)
|
|
specials_last = (self.BOS, self.PAD)
|
|
super().__init__(charset, specials_first, specials_last)
|
|
self.eos_id, self.bos_id, self.pad_id = [
|
|
self._stoi[s] for s in specials_first + specials_last]
|
|
|
|
def encode(self, labels: List[str], device: Optional[torch.device] = None) -> Tensor:
|
|
batch = [torch.as_tensor([self.bos_id] + self._tok2ids(y) + [self.eos_id], dtype=torch.long, device=device)
|
|
for y in labels]
|
|
return pad_sequence(batch, batch_first=True, padding_value=self.pad_id)
|
|
|
|
def _filter(self, probs: Tensor, ids: Tensor) -> Tuple[Tensor, List[int]]:
|
|
ids = ids.tolist()
|
|
try:
|
|
eos_idx = ids.index(self.eos_id)
|
|
except ValueError:
|
|
eos_idx = len(ids)
|
|
|
|
ids = ids[:eos_idx]
|
|
probs = probs[:eos_idx + 1]
|
|
return probs, ids
|
|
|