Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +349 -0
- requirements.txt +0 -0
app.py
ADDED
|
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import dotenv
|
| 2 |
+
# Load environment variables from .env file
|
| 3 |
+
dotenv.load_dotenv()
|
| 4 |
+
|
| 5 |
+
import streamlit as st
|
| 6 |
+
import os
|
| 7 |
+
import sys
|
| 8 |
+
import pickle
|
| 9 |
+
import numpy as np
|
| 10 |
+
import spacy # Added to explicitly check for spacy model loading
|
| 11 |
+
|
| 12 |
+
# --- Custom CSS for reduced whitespace and colors ---
|
| 13 |
+
st.markdown(
|
| 14 |
+
"""
|
| 15 |
+
<style>
|
| 16 |
+
/* Reduce top padding for the main Streamlit app container */
|
| 17 |
+
.stApp {
|
| 18 |
+
padding-top: 0px; /* Reduced this value to minimize whitespace at the very top */
|
| 19 |
+
padding-bottom: 20px;
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
/* Set a subtle background color for the entire page */
|
| 23 |
+
body {
|
| 24 |
+
background-color: #f0f8ff; /* AliceBlue - a very light blue */
|
| 25 |
+
color: #333333; /* Dark gray for text */
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
/* Style for headers */
|
| 29 |
+
h1, h2, h3, h4, h5, h6 {
|
| 30 |
+
color: #1a5276; /* Darker blue for headings */
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
/* Style for buttons */
|
| 34 |
+
.stButton>button {
|
| 35 |
+
background-color: #28a745; /* Green for primary button */
|
| 36 |
+
color: white;
|
| 37 |
+
border-radius: 8px;
|
| 38 |
+
padding: 10px 20px;
|
| 39 |
+
border: none;
|
| 40 |
+
box-shadow: 2px 2px 5px rgba(0,0,0,0.2);
|
| 41 |
+
transition: background-color 0.3s ease;
|
| 42 |
+
}
|
| 43 |
+
.stButton>button:hover {
|
| 44 |
+
background-color: #218838; /* Darker green on hover */
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
/* Style for text areas and select boxes */
|
| 48 |
+
.stTextArea textarea, .stSelectbox [data-testid="stSelectbox"] {
|
| 49 |
+
border-radius: 8px;
|
| 50 |
+
border: 1px solid #cccccc;
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
/* Style for info, success, warning, error boxes */
|
| 54 |
+
.stAlert {
|
| 55 |
+
border-radius: 8px;
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
</style>
|
| 59 |
+
""",
|
| 60 |
+
unsafe_allow_html=True
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# --- Global message log ---
|
| 64 |
+
# This list will store messages to be displayed in the log expander
|
| 65 |
+
app_messages = []
|
| 66 |
+
|
| 67 |
+
def log_message(type, message):
|
| 68 |
+
"""
|
| 69 |
+
Helper function to append messages to the log list and display them prominently
|
| 70 |
+
based on their type.
|
| 71 |
+
"""
|
| 72 |
+
app_messages.append((type, message))
|
| 73 |
+
if type == "error":
|
| 74 |
+
st.error(message)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# Add the 'Scripts' directory to the Python path
|
| 78 |
+
# This allows importing modules like Query_processing, Retrieval, and Answer_Generation
|
| 79 |
+
script_dir = os.path.join(os.path.dirname(__file__), 'Scripts')
|
| 80 |
+
log_message("info", f"Attempting to add '{script_dir}' to Python path.")
|
| 81 |
+
if script_dir not in sys.path:
|
| 82 |
+
sys.path.append(script_dir)
|
| 83 |
+
log_message("info", f"'{script_dir}' added to sys.path.")
|
| 84 |
+
else:
|
| 85 |
+
log_message("info", f"'{script_dir}' already in sys.path.")
|
| 86 |
+
|
| 87 |
+
# --- Debugging: Check if script files exist ---
|
| 88 |
+
script_files_to_check = {
|
| 89 |
+
"Query_processing.py": False,
|
| 90 |
+
"Retrieval.py": False,
|
| 91 |
+
"Answer_Generation.py": False
|
| 92 |
+
}
|
| 93 |
+
all_scripts_found = True
|
| 94 |
+
|
| 95 |
+
for script_name in script_files_to_check:
|
| 96 |
+
script_path = os.path.join(script_dir, script_name)
|
| 97 |
+
if os.path.exists(script_path):
|
| 98 |
+
script_files_to_check[script_name] = True
|
| 99 |
+
else:
|
| 100 |
+
all_scripts_found = False
|
| 101 |
+
log_message("error", f"Error: Script file not found at expected path: {script_path}")
|
| 102 |
+
|
| 103 |
+
if not all_scripts_found:
|
| 104 |
+
log_message("error", "One or more essential script files are missing from the 'Scripts' directory. "
|
| 105 |
+
"Please ensure your project structure is correct.")
|
| 106 |
+
st.stop() # Stop execution if critical files are missing
|
| 107 |
+
|
| 108 |
+
# Import your core logic modules
|
| 109 |
+
try:
|
| 110 |
+
from Query_processing import preprocess_query
|
| 111 |
+
from Retrieval import Retrieval_averagedQP
|
| 112 |
+
from Answer_Generation import answer_generation
|
| 113 |
+
log_message("success", "Core modules imported successfully!")
|
| 114 |
+
except ImportError as e:
|
| 115 |
+
log_message("error", f"Error importing core modules. Make sure 'Scripts' directory is correctly structured and contains "
|
| 116 |
+
f"Query_processing.py, Retrieval.py, and Answer_Generation.py. Error: {e}")
|
| 117 |
+
st.stop()
|
| 118 |
+
|
| 119 |
+
# --- Configuration ---
|
| 120 |
+
# Set page configuration for a wider layout
|
| 121 |
+
st.set_page_config(layout="wide", page_title="Drugbot!", page_icon="💊")
|
| 122 |
+
|
| 123 |
+
# Define paths to your data and vectors
|
| 124 |
+
# These paths are relative to the app.py location
|
| 125 |
+
DATASET_PATH = os.path.join(os.path.dirname(__file__), 'Datasets', 'flattened_drug_dataset_cleaned.csv')
|
| 126 |
+
VECTORS_DIR = os.path.join(os.path.dirname(__file__), 'Vectors')
|
| 127 |
+
FAISS_INDEX_PATH = os.path.join(VECTORS_DIR, 'faiss_index.idx')
|
| 128 |
+
DOC_METADATA_PATH = os.path.join(VECTORS_DIR, 'doc_metadata.pkl')
|
| 129 |
+
DOC_VECTORS_PATH = os.path.join(VECTORS_DIR, 'doc_vectors.npy')
|
| 130 |
+
|
| 131 |
+
# --- Cached Resources ---
|
| 132 |
+
# Use st.cache_resource to load heavy models and data only once
|
| 133 |
+
@st.cache_resource
|
| 134 |
+
def load_all_assets():
|
| 135 |
+
"""
|
| 136 |
+
Verifies the existence of necessary files and attempts to load core NLP models.
|
| 137 |
+
This function will be run only once across all user sessions.
|
| 138 |
+
"""
|
| 139 |
+
with st.spinner("Verifying medical knowledge base and models... This might take a moment."):
|
| 140 |
+
try:
|
| 141 |
+
# 1. Check for presence of FAISS and embedding files
|
| 142 |
+
if not os.path.exists(FAISS_INDEX_PATH):
|
| 143 |
+
log_message("error", f"Missing FAISS index file: {FAISS_INDEX_PATH}")
|
| 144 |
+
return False
|
| 145 |
+
if not os.path.exists(DOC_METADATA_PATH):
|
| 146 |
+
log_message("error", f"Missing document metadata file: {DOC_METADATA_PATH}")
|
| 147 |
+
return False
|
| 148 |
+
if not os.path.exists(DOC_VECTORS_PATH):
|
| 149 |
+
log_message("error", f"Missing document vectors file: {DOC_VECTORS_PATH}")
|
| 150 |
+
return False
|
| 151 |
+
|
| 152 |
+
# 2. Attempt to load the SciSpaCy model (if Query_processing doesn't handle it globally)
|
| 153 |
+
# This is a common point of failure, so we'll explicitly check.
|
| 154 |
+
# Assuming 'en_core_sci_md' is the model name.
|
| 155 |
+
try:
|
| 156 |
+
# If spacy.load() is called multiple times, it might cause issues.
|
| 157 |
+
# It's better if Query_processing handles its own model loading once.
|
| 158 |
+
# This check is just to ensure the model is loadable.
|
| 159 |
+
# nlp = spacy.load("en_core_sci_md")
|
| 160 |
+
# del nlp # Release the model if it's not needed globally here
|
| 161 |
+
log_message("info", "SciSpaCy 'en_core_sci_md' model is expected to be loaded by Query_processing.")
|
| 162 |
+
except OSError:
|
| 163 |
+
log_message("error", "SciSpaCy 'en_core_sci_md' model not found or linked. "
|
| 164 |
+
"Please ensure it's installed correctly (e.g., `pip install https://s3-us-west-2.amazonaws.com/ai2-s2-scispacy/releases/v0.5.4/en_core_sci_md-0.5.4.tar.gz`).")
|
| 165 |
+
return False
|
| 166 |
+
except Exception as e:
|
| 167 |
+
log_message("error", f"An unexpected error occurred while checking SciSpaCy model: {e}")
|
| 168 |
+
return False
|
| 169 |
+
|
| 170 |
+
log_message("success", "Medical knowledge base files verified. Models will be loaded as needed.")
|
| 171 |
+
return True # Indicate successful verification
|
| 172 |
+
except Exception as e:
|
| 173 |
+
log_message("error", f"Failed to verify assets. Please ensure all data and vector files are in their correct paths. Error: {e}")
|
| 174 |
+
return False
|
| 175 |
+
|
| 176 |
+
# Load all assets at the start of the application
|
| 177 |
+
assets_loaded = load_all_assets()
|
| 178 |
+
|
| 179 |
+
# --- Title and Header ---
|
| 180 |
+
st.title("💊 DrugBot")
|
| 181 |
+
st.markdown("---")
|
| 182 |
+
|
| 183 |
+
# --- Instructions ---
|
| 184 |
+
# This section is already placed directly after the title and horizontal rule.
|
| 185 |
+
st.header("How to Use:")
|
| 186 |
+
st.write(
|
| 187 |
+
"""
|
| 188 |
+
Welcome to DrugBot - Retrieval based Medical Drug QA Chatbot! You can ask questions about medical drugs, and I will retrieve
|
| 189 |
+
information from a verified database to provide accurate answers.
|
| 190 |
+
|
| 191 |
+
1. **Select an example query** from the dropdown or **type your own question** in the text area below.
|
| 192 |
+
2. Click the **"Get Answer"** button.
|
| 193 |
+
3. Wait for the chatbot to process your query and generate an answer.
|
| 194 |
+
"""
|
| 195 |
+
)
|
| 196 |
+
st.markdown("---")
|
| 197 |
+
|
| 198 |
+
# --- Example Queries ---
|
| 199 |
+
st.header("Try These Examples:")
|
| 200 |
+
example_queries = [
|
| 201 |
+
"Select an example query...",
|
| 202 |
+
"What is the dosage for Azithromycin?",
|
| 203 |
+
"What are the side effects of Ibuprofen?",
|
| 204 |
+
"How should I take Amoxicillin?",
|
| 205 |
+
"What are the precautions for Warfarin?",
|
| 206 |
+
"What are the drug interactions for Metformin?",
|
| 207 |
+
"What is Paracetamol used for?",
|
| 208 |
+
"Can pregnant women take Aspirin?",
|
| 209 |
+
"How does Prednisone work?",
|
| 210 |
+
"What is the recommended dose for children for Tylenol?"
|
| 211 |
+
]
|
| 212 |
+
|
| 213 |
+
selected_example = st.selectbox(
|
| 214 |
+
"Choose a pre-defined question:",
|
| 215 |
+
example_queries
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
user_query = st.text_area(
|
| 219 |
+
"Or type your question here:",
|
| 220 |
+
value="" if selected_example == "Select an example query..." else selected_example,
|
| 221 |
+
height=100,
|
| 222 |
+
placeholder="e.g., What is the dosage for Azithromycin?"
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
# --- Chatbot Interaction ---
|
| 226 |
+
if st.button("Get Answer", type="primary"):
|
| 227 |
+
if not assets_loaded:
|
| 228 |
+
log_message("error", "Application assets failed to verify. Please check the console for errors.")
|
| 229 |
+
elif not user_query.strip():
|
| 230 |
+
log_message("warning", "Please enter a question or select an example query.")
|
| 231 |
+
else:
|
| 232 |
+
# Check for Groq API Key
|
| 233 |
+
if "GROQ_API_KEY" not in os.environ:
|
| 234 |
+
log_message("error", "GROQ_API_KEY environment variable not set. Please set it to use the chatbot.")
|
| 235 |
+
else:
|
| 236 |
+
with st.spinner("Thinking... Retrieving and generating answer..."):
|
| 237 |
+
try:
|
| 238 |
+
# 1. Preprocess Query
|
| 239 |
+
# Query_processing.py should handle its own spacy model loading.
|
| 240 |
+
(intent, sub_intent), entities = preprocess_query(user_query)
|
| 241 |
+
log_message("info", f"Detected Intent: {intent}, Sub-Intent: {sub_intent}, Entities: {entities}")
|
| 242 |
+
|
| 243 |
+
# 2. Retrieve Chunks
|
| 244 |
+
# Retrieval_averagedQP is expected to load FAISS index and vectors internally.
|
| 245 |
+
chunks = Retrieval_averagedQP(user_query, intent, entities)
|
| 246 |
+
|
| 247 |
+
if not chunks.empty: # Check if chunks DataFrame is not empty
|
| 248 |
+
# 3. Generate Answer
|
| 249 |
+
answer = answer_generation(user_query, chunks)
|
| 250 |
+
|
| 251 |
+
log_message("info", f"Generated Answer Content: {answer[:200]}...") # Log first 200 chars
|
| 252 |
+
if not answer.strip(): # Check if answer is empty after stripping whitespace
|
| 253 |
+
log_message("warning", "Answer generation returned an empty response.")
|
| 254 |
+
st.warning("Could not generate a clear answer for this query. Please try rephrasing.")
|
| 255 |
+
else:
|
| 256 |
+
log_message("success", "Answer generated successfully!")
|
| 257 |
+
st.success("Answer:") # Display success message
|
| 258 |
+
st.write(answer) # This prints the answer in the main area
|
| 259 |
+
|
| 260 |
+
with st.expander("See Retrieved Chunks (for debugging/transparency)"):
|
| 261 |
+
st.write("Top 3 Retrieved Chunks:")
|
| 262 |
+
for i, chunk in enumerate(chunks.head(3).to_dict(orient='records')): # Display top 3 for brevity
|
| 263 |
+
st.write(f"**Chunk {i+1}:**")
|
| 264 |
+
st.json(chunk) # Use st.json for better display of dict
|
| 265 |
+
st.markdown("---")
|
| 266 |
+
else:
|
| 267 |
+
log_message("warning", "No relevant information found for your query. Please try rephrasing.")
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
except Exception as e:
|
| 271 |
+
log_message("error", f"An error occurred while processing your request: {e}")
|
| 272 |
+
st.info("Please try again or rephrase your question.") # User-friendly message
|
| 273 |
+
|
| 274 |
+
st.markdown("---")
|
| 275 |
+
|
| 276 |
+
# --- About Section ---
|
| 277 |
+
st.header("About This Project")
|
| 278 |
+
with st.expander("Learn More About the Medical Drug QA Chatbot"):
|
| 279 |
+
st.markdown(
|
| 280 |
+
"""
|
| 281 |
+
This project implements a **Retrieval-Based Question Answering (QA) system** designed to answer user queries
|
| 282 |
+
about medical drugs. It aims to provide accurate and factually grounded information by retrieving relevant
|
| 283 |
+
details from a verified database.
|
| 284 |
+
|
| 285 |
+
### Purpose
|
| 286 |
+
With the rapid increase in approved medications, ensuring factual accuracy in medical information is critical.
|
| 287 |
+
Traditional Large Language Models (LLMs) can sometimes "hallucinate" or provide untraceable answers.
|
| 288 |
+
Our system addresses this by grounding its responses in a curated database, ensuring factual consistency
|
| 289 |
+
and increasing user trust.
|
| 290 |
+
|
| 291 |
+
### Methodology
|
| 292 |
+
The system follows a multi-stage pipeline:
|
| 293 |
+
1. **Data Acquisition & Preprocessing:** Information about 2,755 drugs was web-scraped from MayoClinic.com,
|
| 294 |
+
cleaned, and flattened into a structured CSV dataset.
|
| 295 |
+
2. **Embedding Generation:** The dataset content is embedded using the **MiniLM-V6** model, and indexed
|
| 296 |
+
with **FAISS** (Facebook AI Similarity Search) for efficient similarity-based retrieval.
|
| 297 |
+
3. **Query Processing:** User queries undergo **intent and sub-intent classification** (e.g., identifying if
|
| 298 |
+
the user is asking about "side effects" or "dosage") and **Named Entity Recognition (NER)** using SciSpaCy
|
| 299 |
+
to improve retrieval precision.
|
| 300 |
+
4. **Retrieval Pipeline:**
|
| 301 |
+
* **Query Vectorization:** The user query is vectorized using MiniLM-V6, incorporating weighted intent vectors.
|
| 302 |
+
* **Initial Retrieval:** FAISS is used to retrieve the top 10 most similar document chunks.
|
| 303 |
+
* **Reranking:** The retrieved chunks are then reranked using **Sentence-BioBERT**, which excels at
|
| 304 |
+
capturing biomedical contexts, significantly improving the relevance of the final selected documents.
|
| 305 |
+
5. **Answer Generation:** The top 3 reranked context chunks, along with the original query, are fed to the
|
| 306 |
+
**LLaMA-4 model** (via Groq API). The LLM is prompted to generate an answer *strictly based on the
|
| 307 |
+
provided context*, minimizing hallucination.
|
| 308 |
+
|
| 309 |
+
### Models Used
|
| 310 |
+
* **MiniLM-L6-v2:** For FAISS-based vector retrieval.
|
| 311 |
+
* **Sentence-BioBERT:** For reranking candidate chunks.
|
| 312 |
+
* **LLaMA-4:** For final answer generation (accessed via Groq API).
|
| 313 |
+
* **SciSpaCy:** For Named Entity Recognition and intent classification.
|
| 314 |
+
|
| 315 |
+
This project was developed by Niranjan Sathish and Hariharan Chandrasekar.
|
| 316 |
+
"""
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
# --- Repository Link Button (Placeholder) ---
|
| 320 |
+
st.markdown("---")
|
| 321 |
+
st.write("### Project Resources")
|
| 322 |
+
st.markdown(
|
| 323 |
+
"""
|
| 324 |
+
Once the project is hosted, you'll find links to the repository or Hugging Face Space here.
|
| 325 |
+
"""
|
| 326 |
+
)
|
| 327 |
+
# Placeholder for the actual button. You can uncomment and update this later.
|
| 328 |
+
# if st.button("Go to GitHub Repository"):
|
| 329 |
+
# st.markdown("[GitHub Repository Link](YOUR_GITHUB_REPO_URL_HERE)")
|
| 330 |
+
# if st.button("Go to Hugging Face Space"):
|
| 331 |
+
# st.markdown("[Hugging Face Space Link](YOUR_HUGGING_FACE_SPACE_URL_HERE)")
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
# --- Application Logs Section ---
|
| 335 |
+
st.markdown("---")
|
| 336 |
+
st.header("Application Logs")
|
| 337 |
+
with st.expander("Show/Hide Logs"):
|
| 338 |
+
if app_messages:
|
| 339 |
+
for msg_type, msg_content in app_messages:
|
| 340 |
+
if msg_type == "info":
|
| 341 |
+
st.info(msg_content)
|
| 342 |
+
elif msg_type == "success":
|
| 343 |
+
st.success(msg_content)
|
| 344 |
+
elif msg_type == "warning":
|
| 345 |
+
st.warning(msg_content)
|
| 346 |
+
elif msg_type == "error":
|
| 347 |
+
st.error(msg_content)
|
| 348 |
+
else:
|
| 349 |
+
st.write("No application messages yet.")
|
requirements.txt
CHANGED
|
Binary files a/requirements.txt and b/requirements.txt differ
|
|
|