Nipun's picture
Fix Gradio compatibility - remove theme parameter
1d55d0c
import gradio as gr
import torch
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import io
from siren import SIREN
from utils import (
get_image_coordinates,
image_to_tensor,
tensor_to_image,
downsample_image,
train_siren,
compute_psnr,
compute_mae,
compute_ssim_simple,
get_model_cache_path,
save_model,
load_model
)
def super_resolve_image(input_image, scale_factor, training_steps, hidden_features, hidden_layers, use_cache=True, image_name="uploaded"):
"""Perform super-resolution using SIREN.
Args:
input_image: PIL Image (high-res ground truth)
scale_factor: Upscaling factor (2, 4, or 8)
training_steps: Number of training steps
hidden_features: Number of hidden units
hidden_layers: Number of hidden layers
use_cache: Whether to use cached models
image_name: Name for cache identification
Returns:
Tuple of images and metrics
"""
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
# Get original (ground truth) dimensions
gt_image = input_image
W_gt, H_gt = gt_image.size
# Downsample the image
downsampled_image = downsample_image(gt_image, scale_factor)
W_low, H_low = downsampled_image.size
print(f"Ground truth size: {W_gt}x{H_gt}")
print(f"Downsampled size: {W_low}x{H_low}")
print(f"Target upscale: {scale_factor}x")
# Convert downsampled image to tensor
low_res_pixels = image_to_tensor(downsampled_image)
low_res_coords = get_image_coordinates(H_low, W_low)
# Check cache
cache_path = get_model_cache_path(
f"{image_name}_{W_gt}x{H_gt}",
scale_factor,
training_steps,
hidden_features,
hidden_layers
)
# Create SIREN model
model = SIREN(
in_features=2,
hidden_features=hidden_features,
hidden_layers=hidden_layers,
out_features=3,
outermost_linear=True,
first_omega_0=30,
hidden_omega_0=30
)
# Try to load from cache
losses = []
if use_cache:
loaded_model = load_model(model, cache_path)
if loaded_model is not None:
model = loaded_model
print("Using cached model!")
# Generate dummy loss curve
losses = [0.01] * training_steps
# Train if not loaded from cache
if not losses:
print("Training SIREN model...")
model, losses = train_siren(
model=model,
coords=low_res_coords,
pixels=low_res_pixels,
num_steps=training_steps,
learning_rate=1e-4,
device=device
)
print("Training complete!")
# Save to cache
if use_cache:
save_model(model, cache_path)
# Generate super-resolved image at original resolution
model.eval()
with torch.no_grad():
high_res_coords = get_image_coordinates(H_gt, W_gt).to(device)
super_resolved_pixels = model(high_res_coords)
# Convert to image
super_resolved_image = tensor_to_image(super_resolved_pixels, H_gt, W_gt)
# Compute quality metrics
gt_pixels = image_to_tensor(gt_image)
psnr = compute_psnr(super_resolved_pixels.cpu(), gt_pixels)
mae = compute_mae(super_resolved_pixels.cpu(), gt_pixels)
ssim = compute_ssim_simple(super_resolved_pixels.cpu(), gt_pixels)
print(f"\nQuality Metrics:")
print(f" PSNR: {psnr:.2f} dB")
print(f" SSIM: {ssim:.4f}")
print(f" MAE: {mae:.4f}")
# Create metrics display
metrics_text = f"""
πŸ“Š Quality Metrics (vs Ground Truth):
β€’ PSNR: {psnr:.2f} dB (higher is better, >30 dB is good)
β€’ SSIM: {ssim:.4f} (closer to 1.0 is better)
β€’ MAE: {mae:.4f} (lower is better)
Training completed in {training_steps} steps
Final MSE Loss: {losses[-1]:.6f}
"""
# Create loss plot
fig, ax = plt.subplots(figsize=(6, 3))
ax.plot(losses, linewidth=2, color='#2E86AB')
ax.set_xlabel('Training Step', fontsize=10)
ax.set_ylabel('MSE Loss', fontsize=10)
ax.set_title('Training Loss Curve', fontsize=12, fontweight='bold')
ax.grid(True, alpha=0.3, linestyle='--')
ax.set_facecolor('#f8f9fa')
# Convert plot to image
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', dpi=100, facecolor='white')
buf.seek(0)
loss_plot = Image.open(buf)
plt.close()
# Return individual images and metrics
# Order: downsampled, loss_plot, super_resolved, gt, metrics (matches UI layout)
return downsampled_image, loss_plot, super_resolved_image, gt_image, metrics_text
# Create Gradio interface
with gr.Blocks(title="SIREN Super-Resolution") as demo:
gr.Markdown(
"""
# πŸ”₯ SIREN Super-Resolution Demo
Upload a high-resolution image, and watch **SIREN** (Sinusoidal Representation Networks)
learn to super-resolve it from an artificially downsampled version.
**How it works:** Your image is downsampled β†’ SIREN learns the low-res β†’ Generates high-res β†’ Compare with original!
"""
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### πŸ“€ Input")
input_image = gr.Image(
type="pil",
label="Upload High-Resolution Image",
height=300
)
scale_factor = gr.Radio(
choices=[2, 4, 8],
value=2,
label="Downsampling Scale Factor",
info="Higher scale = harder task"
)
training_steps = gr.Dropdown(
choices=[500, 1000, 1500, 2000, 3000, 4000, 5000],
value=2000,
label="Training Epochs/Steps",
info="More steps = better quality but slower"
)
use_cache = gr.Checkbox(
value=True,
label="Use Model Cache",
info="Save/load trained models to avoid retraining"
)
with gr.Accordion("βš™οΈ Advanced Settings", open=False):
hidden_features = gr.Slider(
minimum=128,
maximum=512,
value=256,
step=64,
label="Hidden Features",
info="Network width"
)
hidden_layers = gr.Slider(
minimum=2,
maximum=6,
value=3,
step=1,
label="Hidden Layers",
info="Network depth"
)
run_btn = gr.Button("πŸš€ Run Super-Resolution", variant="primary", size="lg")
with gr.Column(scale=2):
gr.Markdown("### πŸ“Š Results & Comparison")
with gr.Tabs():
with gr.Tab("πŸ“‰ Side-by-Side Comparison"):
gr.Markdown("**Low-Resolution Input & Training**")
with gr.Row():
output_downsampled = gr.Image(
label="Downsampled (Input)",
type="pil",
height=300
)
output_loss_plot = gr.Image(
label="Training Loss Curve",
type="pil",
height=300
)
gr.Markdown("**High-Resolution Comparison**")
with gr.Row():
output_super_resolved = gr.Image(
label="Super-Resolved (SIREN Prediction)",
type="pil",
height=300
)
output_ground_truth = gr.Image(
label="Ground Truth (Original)",
type="pil",
height=300
)
with gr.Tab("πŸ“ˆ Quality Metrics"):
metrics_display = gr.Textbox(
label="Quality Analysis",
lines=10,
max_lines=15
)
# Examples
gr.Markdown("### πŸ“Έ Try these examples:")
# Wrapper function to handle examples with image names
def super_resolve_with_name(input_image, scale_factor, training_steps, hidden_features, hidden_layers, use_cache):
# Extract image name from the example path if it's from samples
image_name = "uploaded"
if hasattr(input_image, 'name') and input_image.name:
image_name = input_image.name.split('/')[-1].split('.')[0]
return super_resolve_image(input_image, scale_factor, training_steps, hidden_features, hidden_layers, use_cache, image_name)
gr.Examples(
examples=[
["samples/cat.jpg", 2, 2000, 256, 3, True],
["samples/landscape.jpg", 4, 3000, 256, 3, True],
["samples/portrait.jpg", 2, 2000, 256, 3, True],
["samples/flower.jpg", 4, 3000, 256, 4, True],
],
inputs=[input_image, scale_factor, training_steps, hidden_features, hidden_layers, use_cache],
outputs=[output_downsampled, output_loss_plot, output_super_resolved, output_ground_truth, metrics_display],
fn=super_resolve_with_name,
cache_examples=False,
)
gr.Markdown(
"""
### πŸ“š About SIREN & Metrics
**SIREN** uses sine activation functions for representing continuous signals with fine details.
**Quality Metrics Explained:**
- **PSNR** (Peak Signal-to-Noise Ratio): Measures reconstruction quality. >30 dB is good, >40 dB is excellent.
- **SSIM** (Structural Similarity Index): Perceptual quality metric. 1.0 is perfect, >0.9 is very good.
- **MAE** (Mean Absolute Error): Average pixel difference. Lower is better.
**Tips for Better Results:**
- Start with 2x scale for quick testing
- Use 3000-5000 steps for 4x and 8x scaling
- Enable model cache to avoid retraining identical settings
- Higher scale factors need more training steps and network capacity
**Reference:** [SIREN Paper](https://arxiv.org/abs/2006.09661) |
[Tutorial](https://github.com/nipunbatra/pml-teaching/blob/master/notebooks/siren.ipynb)
"""
)
# Connect the button
run_btn.click(
fn=super_resolve_with_name,
inputs=[input_image, scale_factor, training_steps, hidden_features, hidden_layers, use_cache],
outputs=[output_downsampled, output_loss_plot, output_super_resolved, output_ground_truth, metrics_display]
)
if __name__ == "__main__":
demo.launch()