Spaces:
Sleeping
Sleeping
supercat666
commited on
Commit
•
ba43ebe
1
Parent(s):
4a895c3
fixed bugs
Browse files
app.py
CHANGED
@@ -125,8 +125,9 @@ if selected_model == 'Cas9':
|
|
125 |
st.session_state['on_target_results'] = sorted_predictions
|
126 |
|
127 |
if 'on_target_results' in st.session_state and st.session_state['on_target_results']:
|
|
|
128 |
df = pd.DataFrame(st.session_state['on_target_results'],
|
129 |
-
columns=["Gene ID", "Start Pos", "End Pos", "Strand", "gRNA", "Prediction"])
|
130 |
|
131 |
# Now create a Plotly plot with the sorted_predictions
|
132 |
fig = go.Figure()
|
@@ -134,8 +135,7 @@ if selected_model == 'Cas9':
|
|
134 |
# Iterate over the sorted predictions to create the plot
|
135 |
for i, prediction in enumerate(sorted_predictions, start=1):
|
136 |
# Extract data for plotting
|
137 |
-
chrom, start, end, strand, gRNA, pred_score = prediction
|
138 |
-
# Strand is not used in this plot, but you could use it to determine marker symbol, for example
|
139 |
fig.add_trace(go.Scatter(
|
140 |
x=[start, end],
|
141 |
y=[i, i], # Y-values are just the rank of the prediction
|
@@ -144,7 +144,7 @@ if selected_model == 'Cas9':
|
|
144 |
text=[f"Rank: {i}", ""], # Text at the start position only
|
145 |
hoverinfo='text',
|
146 |
hovertext=[
|
147 |
-
f"Rank: {i}<br>Target: {gRNA}<br>
|
148 |
""
|
149 |
],
|
150 |
))
|
@@ -155,7 +155,7 @@ if selected_model == 'Cas9':
|
|
155 |
xaxis_title='Genomic Position',
|
156 |
yaxis_title='Rank',
|
157 |
yaxis=dict(showticklabels=False)
|
158 |
-
#
|
159 |
)
|
160 |
|
161 |
# Display the plot
|
@@ -364,10 +364,10 @@ elif selected_model == 'Cas12':
|
|
364 |
bed_file_path = f"{gene_symbol}_crispr_targets.bed"
|
365 |
|
366 |
# Generate GenBank file
|
367 |
-
cas12.
|
368 |
|
369 |
# Generate BED file
|
370 |
-
cas12.
|
371 |
|
372 |
st.write('Top on-target predictions:')
|
373 |
st.dataframe(df)
|
|
|
125 |
st.session_state['on_target_results'] = sorted_predictions
|
126 |
|
127 |
if 'on_target_results' in st.session_state and st.session_state['on_target_results']:
|
128 |
+
# Include "Target" in the DataFrame's columns
|
129 |
df = pd.DataFrame(st.session_state['on_target_results'],
|
130 |
+
columns=["Gene ID", "Start Pos", "End Pos", "Strand", "Target", "gRNA", "Prediction"])
|
131 |
|
132 |
# Now create a Plotly plot with the sorted_predictions
|
133 |
fig = go.Figure()
|
|
|
135 |
# Iterate over the sorted predictions to create the plot
|
136 |
for i, prediction in enumerate(sorted_predictions, start=1):
|
137 |
# Extract data for plotting
|
138 |
+
chrom, start, end, strand, target, gRNA, pred_score = prediction # Adjusted to include the target sequence
|
|
|
139 |
fig.add_trace(go.Scatter(
|
140 |
x=[start, end],
|
141 |
y=[i, i], # Y-values are just the rank of the prediction
|
|
|
144 |
text=[f"Rank: {i}", ""], # Text at the start position only
|
145 |
hoverinfo='text',
|
146 |
hovertext=[
|
147 |
+
f"Rank: {i}<br>Chromosome: {chrom}<br>Target Sequence: {target}<br>gRNA: {gRNA}<br>Start: {start}<br>End: {end}<br>Strand: {'+' if strand == '1' else '-'}<br>Prediction Score: {pred_score:.4f}",
|
148 |
""
|
149 |
],
|
150 |
))
|
|
|
155 |
xaxis_title='Genomic Position',
|
156 |
yaxis_title='Rank',
|
157 |
yaxis=dict(showticklabels=False)
|
158 |
+
# Hide the y-axis labels since the rank is indicated in the hovertext
|
159 |
)
|
160 |
|
161 |
# Display the plot
|
|
|
364 |
bed_file_path = f"{gene_symbol}_crispr_targets.bed"
|
365 |
|
366 |
# Generate GenBank file
|
367 |
+
cas12.generate_genbank_file_from_data(df, gene_sequence, gene_symbol, genbank_file_path)
|
368 |
|
369 |
# Generate BED file
|
370 |
+
cas12.generate_bed_file_from_data(df, bed_file_path)
|
371 |
|
372 |
st.write('Top on-target predictions:')
|
373 |
st.dataframe(df)
|
cas9on.py
CHANGED
@@ -98,7 +98,8 @@ def find_crispr_targets(sequence, chr, start, strand, pam="NGG", target_length=2
|
|
98 |
target_seq = sequence[i - target_length:i + 3]
|
99 |
tar_start = start + i - target_length
|
100 |
tar_end = start + i + 3
|
101 |
-
|
|
|
102 |
|
103 |
return targets
|
104 |
|
@@ -125,13 +126,16 @@ def process_gene(gene_symbol, model_path):
|
|
125 |
# Return both the data and the fetched sequence
|
126 |
return all_data, gene_sequence
|
127 |
|
128 |
-
def create_genbank_features(
|
129 |
features = []
|
130 |
-
for
|
131 |
-
|
|
|
|
|
132 |
feature = SeqFeature(location=location, type="misc_feature", qualifiers={
|
133 |
-
'label':
|
134 |
-
'
|
|
|
135 |
})
|
136 |
features.append(feature)
|
137 |
return features
|
@@ -162,7 +166,7 @@ def create_bed_file_from_df(df, output_path):
|
|
162 |
chrom = row["Gene ID"]
|
163 |
start = int(row["Start Pos"])
|
164 |
end = int(row["End Pos"])
|
165 |
-
strand = '+' if
|
166 |
gRNA = row["gRNA"]
|
167 |
-
score = row["Prediction"]
|
168 |
bed_file.write(f"{chrom}\t{start}\t{end}\t{gRNA}\t{score}\t{strand}\n")
|
|
|
98 |
target_seq = sequence[i - target_length:i + 3]
|
99 |
tar_start = start + i - target_length
|
100 |
tar_end = start + i + 3
|
101 |
+
gRNA = sequence[i - target_length:i]
|
102 |
+
targets.append([target_seq, gRNA, chr, str(tar_start), str(tar_end), str(strand)])
|
103 |
|
104 |
return targets
|
105 |
|
|
|
126 |
# Return both the data and the fetched sequence
|
127 |
return all_data, gene_sequence
|
128 |
|
129 |
+
def create_genbank_features(formatted_data):
|
130 |
features = []
|
131 |
+
for data in formatted_data:
|
132 |
+
# Strand conversion to Biopython's convention
|
133 |
+
strand = 1 if data[3] == '+' else -1
|
134 |
+
location = FeatureLocation(start=int(data[1]), end=int(data[2]), strand=strand)
|
135 |
feature = SeqFeature(location=location, type="misc_feature", qualifiers={
|
136 |
+
'label': data[5], # Use gRNA as the label
|
137 |
+
'target': data[4], # Include the target sequence
|
138 |
+
'note': f"Prediction: {data[6]}" # Include the prediction score
|
139 |
})
|
140 |
features.append(feature)
|
141 |
return features
|
|
|
166 |
chrom = row["Gene ID"]
|
167 |
start = int(row["Start Pos"])
|
168 |
end = int(row["End Pos"])
|
169 |
+
strand = '+' if row["Strand"] == '+' else '-'
|
170 |
gRNA = row["gRNA"]
|
171 |
+
score = str(row["Prediction"]) # Ensure score is converted to string if not already
|
172 |
bed_file.write(f"{chrom}\t{start}\t{end}\t{gRNA}\t{score}\t{strand}\n")
|