Alerter_v4.0 / utils.py
Ninad077's picture
Upload 21 files
245e020 verified
import os
import json
import pandas as pd
from google.cloud import bigquery
from google.oauth2 import service_account
import streamlit as st
import requests
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from email.mime.base import MIMEBase
from email import encoders
from queries import queries
from googleapiclient.discovery import build
from googleapiclient.http import MediaFileUpload
from google.auth import exceptions
from google.auth import exceptions
from google.auth.transport.requests import Request
from google.auth.exceptions import DefaultCredentialsError
from google.auth import credentials
from google.auth import default
from google.auth import exceptions
from google.auth import default
from google.auth.transport.requests import Request
# Define your email server details
EMAIL_HOST = 'smtp.gmail.com'
EMAIL_PORT = 587
EMAIL_HOST_USER = 'alerter.response@gmail.com'
EMAIL_HOST_PASSWORD = 'tmid yqlu eglt sfzv'
SLACK_BOT_TOKEN = 'xoxb-2151238541-7506161157329-qYCCaocyGDJwwwtOOWLY2SMR'
#Authenticate BigQuery
def authenticate_bigquery():
creds = load_gcp_credentials()
if not creds:
st.error("Unable to load GCP credentials for BigQuery authentication.")
return None
return creds
def authenticate_bigquery_updated():
gcp_credentials = load_gcp_credentials()
if gcp_credentials:
gcp_credentials = gcp_credentials.with_scopes([
"https://www.googleapis.com/auth/cloud-platform",
"https://www.googleapis.com/auth/drive"
])
return gcp_credentials
return None
#Load GCP credentials
def load_gcp_credentials():
try:
# Retrieve GCP credentials from the environment variable
gcp_credentials_str = os.getenv('GCP_CREDENTIALS')
if not gcp_credentials_str:
raise ValueError("GCP_CREDENTIALS environment variable not defined")
# Parse the secret (assuming it's a JSON string)
gcp_credentials = json.loads(gcp_credentials_str)
# Save to a temporary file (Google Cloud uses a JSON file for authentication)
with open("gcp_credentials.json", "w") as f:
json.dump(gcp_credentials, f)
# Authenticate using Google Cloud SDK
credentials_from_file = service_account.Credentials.from_service_account_file("gcp_credentials.json")
# Return the credentials to be used later
return credentials_from_file
except Exception as e:
print(f"Error retrieving or loading GCP credentials: {str(e)}")
return None
# Upload to BQ
def upload_to_bigquery(df, table_id):
try:
# Load the GCP credentials from Hugging Face secret
bigquery_creds = load_gcp_credentials()
if not bigquery_creds:
st.error("Unable to load GCP credentials.")
return
# Initialize BigQuery client with the loaded credentials
client = bigquery.Client(credentials=bigquery_creds)
# Convert the DataFrame to a list of dictionaries
records = df.to_dict(orient='records')
# Prepare the table schema if needed (optional)
job_config = bigquery.LoadJobConfig(
write_disposition="WRITE_APPEND", # Use WRITE_TRUNCATE to overwrite, WRITE_APPEND to append
)
# Load the data to BigQuery
load_job = client.load_table_from_json(records, table_id, job_config=job_config)
load_job.result() # Wait for the job to complete
st.success("Data submitted")
except Exception as e:
st.error(f"An error occurred while uploading to BigQuery: {e}")
def preprocess_csv(file_path):
# Load the CSV file
df = pd.read_csv(file_path)
# Define columns to be converted
date_columns = ['Order_Date', 'State_Date', 'Entry_Month']
if 'bag_id_cn' in df.columns:
df['bag_id_cn'] = df['bag_id_cn'].replace({'\..*': ''}, regex=True).astype('Int64')
# Convert specified columns from DD/MM/YY to 'YYYY-MM-DD 00:00:00 UTC'
for column in date_columns:
if column in df.columns:
df[column] = pd.to_datetime(df[column], format='%d/%m/%y', errors='coerce').dt.strftime('%Y-%m-%d 00:00:00 UTC')
# Save the preprocessed CSV
preprocessed_file_path = 'preprocessed_' + os.path.basename(file_path)
df.to_csv(preprocessed_file_path, index=False)
return preprocessed_file_path
# Function to read files from local path
def read_file(path):
try:
with open(path, 'rb') as file:
return file.read()
except Exception as e:
st.error(f"Failed to read file from {path}: {str(e)}")
return None
# Function to get file content type based on file extension
def get_content_type(file_path):
if file_path.lower().endswith('.pdf'):
return 'application/pdf'
elif file_path.lower().endswith('.csv'):
return 'text/csv'
elif file_path.lower().endswith('.xlsx'):
return 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet'
else:
return 'application/octet-stream'
# Encode the image to Base64
def get_base64_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode()
def send_message_via_email(message, email_address, files, subject=None, body=None):
try:
# Set up the server
server = smtplib.SMTP(EMAIL_HOST, EMAIL_PORT)
server.starttls()
server.login(EMAIL_HOST_USER, EMAIL_HOST_PASSWORD)
# Create the email
msg = MIMEMultipart()
msg['From'] = EMAIL_HOST_USER
msg['To'] = email_address
msg['Subject'] = subject if subject else "🚨 Alerter"
# Attach the message body
msg.attach(MIMEText(body if body else message, 'plain'))
# Attach each file if provided
if files:
for uploaded_file in files:
part = MIMEBase('application', 'octet-stream')
part.set_payload(uploaded_file.read())
encoders.encode_base64(part)
part.add_header('Content-Disposition', f'attachment; filename={uploaded_file.name}')
msg.attach(part)
# Send the email
server.sendmail(EMAIL_HOST_USER, email_address, msg.as_string())
server.quit()
return True, "Message sent successfully"
except Exception as e:
return False, str(e)
def send_message_via_webhook(message, webhook_url):
try:
payload = {"text": message}
response = requests.post(webhook_url, json=payload)
if response.status_code == 200:
return True, "Message sent successfully"
else:
return False, f"Error {response.status_code}: {response.text}"
except Exception as e:
return False, str(e)
def send_file_to_slack(file, webhook_url):
files = {
'file': (file.name, file, 'application/octet-stream') # Send as binary
}
response = requests.post(
webhook_url,
files=files,
headers={"Content-Type": "multipart/form-data"}
)
return response
def send_file_to_slack_up(file, webhook_url, channel_id):
# Slack API URL for file upload
slack_api_url = 'https://slack.com/api/files.upload'
# Prepare headers for the API call
headers = {
'Authorization': 'Bearer ' + 'SLACK_BOT_TOKEN', # Replace with your actual Slack bot token
}
# Prepare the payload and file in binary format
files = {
'file': (file.name, file, 'application/octet-stream'), # Send the file in its original binary format
'channels': channel_id, # Specify the Slack channel ID where the file should be uploaded
}
# Make the POST request to upload the file to Slack
response = requests.post(slack_api_url, headers=headers, files=files)
return response
def check_duplicates(client):
"""Check for duplicates using BigQuery with the provided credentials file."""
results = {}
bigquery_creds = authenticate_bigquery()
client = bigquery.Client(credentials=bigquery_creds)
for i, (query_name, query) in enumerate(queries.items()):
query_job = client.query(query)
df = query_job.result().to_dataframe()
# For debugging, write the DataFrame to the Streamlit app
st.write(f"{query_name}:", df)
button_styles = """
<style>
div.stButton > button {
color: #ffffff; /* Text color */
font-size: 30px;
background-image: linear-gradient(to right, #800000, #ff0000); /* Maroon to light red gradient */
border: none;
padding: 10px 20px;
cursor: pointer;
border-radius: 15px;
display: inline-block;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1), 0 8px 15px rgba(0, 0, 0, 0.1); /* Box shadow */
transition: all 0.3s ease; /* Smooth transition on hover */
}
div.stButton > button:hover {
background-color: #00ff00; /* Hover background color */
color: #ff0000; /* Hover text color */
box-shadow: 0 6px 10px rgba(0, 0, 0, 0.2), 0 12px 20px rgba(0, 0, 0, 0.2); /* Box shadow on hover */
}
</style>
"""
st.markdown(button_styles, unsafe_allow_html=True)
if st.button(f"Copy Query", key=f"copy_query_{i}"):
pyperclip.copy(query)
st.success('Query copied to clipboard!')
if not df.empty:
duplicate_count = len(df)
results[query_name] = duplicate_count
return results
def upload_to_drive(file_path, folder_id):
try:
# Authenticate with Google Drive using Hugging Face secrets
creds = authenticate_google_drive()
if not creds:
return
# Build the Google Drive service
service = build('drive', 'v3', credentials=creds)
# Define the file metadata
file_metadata = {'name': os.path.basename(file_path), 'parents': [folder_id]}
# Determine MIME type based on file extension
mime_type = 'application/vnd.ms-excel' if file_path.endswith('.xlsx') else 'text/csv'
media = MediaFileUpload(file_path, mimetype=mime_type)
# Upload the file to Google Drive
file = service.files().create(body=file_metadata, media_body=media, fields='id').execute()
st.write("")
except Exception as e:
st.error(f"An error occurred: {e}")
st.error("Ensure the folder ID is correct and the service account has permission to access the folder.")
def authenticate_google_drive():
creds = load_gcp_credentials()
if not creds:
st.error("Unable to load GCP credentials for Google Drive authentication.")
return None
return creds
def get_oauth_token():
try:
# Define the required scopes for Dataform
required_scopes = [
"https://www.googleapis.com/auth/cloud-platform", # General GCP access
"https://www.googleapis.com/auth/bigquery", # BigQuery access
"https://www.googleapis.com/auth/dataform"
]
# Load the credentials with the specified scopes
creds, _ = default(scopes=required_scopes)
if creds is None:
raise exceptions.DefaultCredentialsError("No valid credentials found.")
# Refresh the credentials to get the latest access token
creds.refresh(Request())
return creds.token
except exceptions.GoogleAuthError as e:
print(f"Authentication error: {e}")
return None
def get_task_logs(task_name="Tally_backup_Ninad"):
logs = eventlog.read('Microsoft-Windows-TaskScheduler/Operational', limit=100)
task_logs = []
for log in logs:
if task_name in log['Message']:
task_logs.append(log['Message'])
return task_logs