Nina-HK's picture
Update app.py
9833133
raw
history blame
2.91 kB
# -*- coding: utf-8 -*-
# %%capture
# #Use capture to not show the output of installing the libraries!
#model_multi = tf.keras.models.load_model("densenet")
# define the labels for the multi-label classification model
#labels_multi = {0: 'healthy', 1: 'mild', 2: 'moderate'}
#model = tf.keras.models.load_model('/content/drive/MyDrive/project_image_2023_NO/saved_models/saved_model/densenet')
#labels = ['Healthy', 'Patient']
#labels = {0: 'healthy', 1: 'patient'}
import gradio as gr
import requests
import torch
import torch.nn as nn
from PIL import Image
from torchvision.models import resnet50
from torchvision.transforms import functional as F
import numpy as np
import tensorflow as tf
from transformers import pipeline
from tensorflow.keras.preprocessing import image as image_utils
from tensorflow.keras.applications import densenet, efficientnet
import tensorflow as tf
import gradio as gr
# load the CNN binary classification model
model_cnn = tf.keras.models.load_model("CNN_binary")
# define the labels for the binary classification model
labels_cnn = {0: 'healthy', 1: 'Patients'}
# load the EfficientNet binary classification model
model_efn = tf.keras.models.load_model("efficientNet_binary")
# define the labels for the binary classification model
labels_efn = {0: 'healthy', 1: 'Patients'}
def classify_cnn(inp):
inp = inp.reshape((-1, 224, 224, 3))
inp = tf.keras.applications.densenet.preprocess_input(inp)
prediction = model_cnn.predict(inp)
confidences = {labels_cnn[i]: float(prediction[0][i]) for i in range(2)}
return confidences
def classify_efn(inp):
inp = inp.reshape((-1, 224, 224, 3))
inp = tf.keras.applications.efficientnet.preprocess_input(inp)
prediction = model_efn.predict(inp)
confidences = {labels_efn[i]: float(prediction[0][i]) for i in range(2)}
return confidences
binary_interface_cnn = gr.Interface(fn=classify_cnn,
inputs=gr.Image(shape=(224, 224)),
outputs=gr.Label(num_top_classes=2),
title="Binary Image Classification",
description="Classify an image as healthy or patient using custom CNN.",
examples=[['300104.png'],['371129.png']]
)
binary_interface_efn = gr.Interface(fn=classify_efn,
inputs=gr.Image(shape=(224, 224)),
outputs=gr.Label(num_top_classes=2),
title="Binary Image Classification",
description="Classify an image as healthy or patient using EfficientNet.",
examples=[['300104.png'],['371129.png']]
)
demo = gr.TabbedInterface([binary_interface_cnn, binary_interface_efn], ["Custom CNN", "CNNs"])
demo.launch()