climategan / climategan /transforms.py
NimaBoscarino's picture
copy the climategan repo in here
6e601ed
"""Data transforms for the loaders
"""
import random
import traceback
from pathlib import Path
import numpy as np
import torch
import torch.nn.functional as F
from skimage.color import rgba2rgb
from skimage.io import imread
from torchvision import transforms as trsfs
from torchvision.transforms.functional import (
adjust_brightness,
adjust_contrast,
adjust_saturation,
)
from climategan.tutils import normalize
def interpolation(task):
if task in ["d", "m", "s"]:
return {"mode": "nearest"}
else:
return {"mode": "bilinear", "align_corners": True}
class Resize:
def __init__(self, target_size, keep_aspect_ratio=False):
"""
Resize transform. Target_size can be an int or a tuple of ints,
depending on whether both height and width should have the same
final size or not.
If keep_aspect_ratio is specified then target_size must be an int:
the smallest dimension of x will be set to target_size and the largest
dimension will be computed to the closest int keeping the original
aspect ratio. e.g.
>>> x = torch.rand(1, 3, 1200, 1800)
>>> m = torch.rand(1, 1, 600, 600)
>>> d = {"x": x, "m": m}
>>> {k: v.shape for k, v in Resize(640, True)(d).items()}
{"x": (1, 3, 640, 960), "m": (1, 1, 640, 960)}
Args:
target_size (int | tuple(int)): New size for the tensor
keep_aspect_ratio (bool, optional): Whether or not to keep aspect ratio
when resizing. Requires target_size to be an int. If keeping aspect
ratio, smallest dim will be set to target_size. Defaults to False.
"""
if isinstance(target_size, (int, tuple, list)):
if not isinstance(target_size, int) and not keep_aspect_ratio:
assert len(target_size) == 2
self.h, self.w = target_size
else:
if keep_aspect_ratio:
assert isinstance(target_size, int)
self.h = self.w = target_size
self.default_h = int(self.h)
self.default_w = int(self.w)
self.sizes = {}
elif isinstance(target_size, dict):
assert (
not keep_aspect_ratio
), "dict target_size not compatible with keep_aspect_ratio"
self.sizes = {
k: {"h": v, "w": v} for k, v in target_size.items() if k != "default"
}
self.default_h = int(target_size["default"])
self.default_w = int(target_size["default"])
self.keep_aspect_ratio = keep_aspect_ratio
def compute_new_default_size(self, tensor):
"""
compute the new size for a tensor depending on target size
and keep_aspect_rato
Args:
tensor (torch.Tensor): 4D tensor N x C x H x W.
Returns:
tuple(int): (new_height, new_width)
"""
if self.keep_aspect_ratio:
h, w = tensor.shape[-2:]
if h < w:
return (self.h, int(self.default_h * w / h))
else:
return (int(self.default_h * h / w), self.default_w)
return (self.default_h, self.default_w)
def compute_new_size_for_task(self, task):
assert (
not self.keep_aspect_ratio
), "compute_new_size_for_task is not compatible with keep aspect ratio"
if task not in self.sizes:
return (self.default_h, self.default_w)
return (self.sizes[task]["h"], self.sizes[task]["w"])
def __call__(self, data):
"""
Resize a dict of tensors to the "x" key's new_size
Args:
data (dict[str:torch.Tensor]): The data dict to transform
Returns:
dict[str: torch.Tensor]: dict with all tensors resized to the
new size of the data["x"] tensor
"""
task = tensor = new_size = None
try:
if not self.sizes:
d = {}
new_size = self.compute_new_default_size(
data["x"] if "x" in data else list(data.values())[0]
)
for task, tensor in data.items():
d[task] = F.interpolate(
tensor, size=new_size, **interpolation(task)
)
return d
d = {}
for task, tensor in data.items():
new_size = self.compute_new_size_for_task(task)
d[task] = F.interpolate(tensor, size=new_size, **interpolation(task))
return d
except Exception as e:
tb = traceback.format_exc()
print("Debug: task, shape, interpolation, h, w, new_size")
print(task)
print(tensor.shape)
print(interpolation(task))
print(self.h, self.w)
print(new_size)
print(tb)
raise Exception(e)
class RandomCrop:
def __init__(self, size, center=False):
assert isinstance(size, (int, tuple, list))
if not isinstance(size, int):
assert len(size) == 2
self.h, self.w = size
else:
self.h = self.w = size
self.h = int(self.h)
self.w = int(self.w)
self.center = center
def __call__(self, data):
H, W = (
data["x"].size()[-2:] if "x" in data else list(data.values())[0].size()[-2:]
)
if not self.center:
top = np.random.randint(0, H - self.h)
left = np.random.randint(0, W - self.w)
else:
top = (H - self.h) // 2
left = (W - self.w) // 2
return {
task: tensor[:, :, top : top + self.h, left : left + self.w]
for task, tensor in data.items()
}
class RandomHorizontalFlip:
def __init__(self, p=0.5):
# self.flip = TF.hflip
self.p = p
def __call__(self, data):
if np.random.rand() > self.p:
return data
return {task: torch.flip(tensor, [3]) for task, tensor in data.items()}
class ToTensor:
def __init__(self):
self.ImagetoTensor = trsfs.ToTensor()
self.MaptoTensor = self.ImagetoTensor
def __call__(self, data):
new_data = {}
for task, im in data.items():
if task in {"x", "a"}:
new_data[task] = self.ImagetoTensor(im)
elif task in {"m"}:
new_data[task] = self.MaptoTensor(im)
elif task == "s":
new_data[task] = torch.squeeze(torch.from_numpy(np.array(im))).to(
torch.int64
)
elif task == "d":
new_data = im
return new_data
class Normalize:
def __init__(self, opts):
if opts.data.normalization == "HRNet":
self.normImage = trsfs.Normalize(
((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
)
else:
self.normImage = trsfs.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
self.normDepth = lambda x: x
self.normMask = lambda x: x
self.normSeg = lambda x: x
self.normalize = {
"x": self.normImage,
"s": self.normSeg,
"d": self.normDepth,
"m": self.normMask,
}
def __call__(self, data):
return {
task: self.normalize.get(task, lambda x: x)(tensor.squeeze(0))
for task, tensor in data.items()
}
class RandBrightness: # Input need to be between -1 and 1
def __call__(self, data):
return {
task: rand_brightness(tensor) if task == "x" else tensor
for task, tensor in data.items()
}
class RandSaturation:
def __call__(self, data):
return {
task: rand_saturation(tensor) if task == "x" else tensor
for task, tensor in data.items()
}
class RandContrast:
def __call__(self, data):
return {
task: rand_contrast(tensor) if task == "x" else tensor
for task, tensor in data.items()
}
class BucketizeDepth:
def __init__(self, opts, domain):
self.domain = domain
if opts.gen.d.classify.enable and domain in {"s", "kitti"}:
self.buckets = torch.linspace(
*[
opts.gen.d.classify.linspace.min,
opts.gen.d.classify.linspace.max,
opts.gen.d.classify.linspace.buckets - 1,
]
)
self.transforms = {
"d": lambda tensor: torch.bucketize(
tensor, self.buckets, out_int32=True, right=True
)
}
else:
self.transforms = {}
def __call__(self, data):
return {
task: self.transforms.get(task, lambda x: x)(tensor)
for task, tensor in data.items()
}
class PrepareInference:
"""
Transform which:
- transforms a str or an array into a tensor
- resizes the image to keep the aspect ratio
- crops in the center of the resized image
- normalize to 0:1
- rescale to -1:1
"""
def __init__(self, target_size=640, half=False, is_label=False, enforce_128=True):
if enforce_128:
if target_size % 2 ** 7 != 0:
raise ValueError(
f"Received a target_size of {target_size}, which is not a "
+ "multiple of 2^7 = 128. Set enforce_128 to False to disable "
+ "this error."
)
self.resize = Resize(target_size, keep_aspect_ratio=True)
self.crop = RandomCrop((target_size, target_size), center=True)
self.half = half
self.is_label = is_label
def process(self, t):
if isinstance(t, (str, Path)):
t = imread(str(t))
if isinstance(t, np.ndarray):
if t.shape[-1] == 4:
t = rgba2rgb(t)
t = torch.from_numpy(t)
if t.ndim == 3:
t = t.permute(2, 0, 1)
if t.ndim == 3:
t = t.unsqueeze(0)
elif t.ndim == 2:
t = t.unsqueeze(0).unsqueeze(0)
if not self.is_label:
t = t.to(torch.float32)
t = normalize(t)
t = (t - 0.5) * 2
t = {"m": t} if self.is_label else {"x": t}
t = self.resize(t)
t = self.crop(t)
t = t["m"] if self.is_label else t["x"]
if self.half and not self.is_label:
t = t.half()
return t
def __call__(self, x):
"""
normalize, rescale, resize, crop in the center
x can be: dict {"task": data} list [data, ..] or data
data ^ can be a str, a Path, a numpy arrray or a Tensor
"""
if isinstance(x, dict):
return {k: self.process(v) for k, v in x.items()}
if isinstance(x, list):
return [self.process(t) for t in x]
return self.process(x)
class PrepareTest:
"""
Transform which:
- transforms a str or an array into a tensor
- resizes the image to keep the aspect ratio
- crops in the center of the resized image
- normalize to 0:1 (optional)
- rescale to -1:1 (optional)
"""
def __init__(self, target_size=640, half=False):
self.resize = Resize(target_size, keep_aspect_ratio=True)
self.crop = RandomCrop((target_size, target_size), center=True)
self.half = half
def process(self, t, normalize=False, rescale=False):
if isinstance(t, (str, Path)):
# t = img_as_float(imread(str(t)))
t = imread(str(t))
if t.shape[-1] == 4:
# t = rgba2rgb(t)
t = t[:, :, :3]
if np.ndim(t) == 2:
t = np.repeat(t[:, :, np.newaxis], 3, axis=2)
if isinstance(t, np.ndarray):
t = torch.from_numpy(t)
t = t.permute(2, 0, 1)
if len(t.shape) == 3:
t = t.unsqueeze(0)
t = t.to(torch.float32)
normalize(t) if normalize else t
(t - 0.5) * 2 if rescale else t
t = {"x": t}
t = self.resize(t)
t = self.crop(t)
t = t["x"]
if self.half:
return t.to(torch.float16)
return t
def __call__(self, x, normalize=False, rescale=False):
"""
Call process()
x can be: dict {"task": data} list [data, ..] or data
data ^ can be a str, a Path, a numpy arrray or a Tensor
"""
if isinstance(x, dict):
return {k: self.process(v, normalize, rescale) for k, v in x.items()}
if isinstance(x, list):
return [self.process(t, normalize, rescale) for t in x]
return self.process(x, normalize, rescale)
def get_transform(transform_item, mode):
"""Returns the torchivion transform function associated to a
transform_item listed in opts.data.transforms ; transform_item is
an addict.Dict
"""
if transform_item.name == "crop" and not (
transform_item.ignore is True or transform_item.ignore == mode
):
return RandomCrop(
(transform_item.height, transform_item.width),
center=transform_item.center == mode,
)
elif transform_item.name == "resize" and not (
transform_item.ignore is True or transform_item.ignore == mode
):
return Resize(
transform_item.new_size, transform_item.get("keep_aspect_ratio", False)
)
elif transform_item.name == "hflip" and not (
transform_item.ignore is True or transform_item.ignore == mode
):
return RandomHorizontalFlip(p=transform_item.p or 0.5)
elif transform_item.name == "brightness" and not (
transform_item.ignore is True or transform_item.ignore == mode
):
return RandBrightness()
elif transform_item.name == "saturation" and not (
transform_item.ignore is True or transform_item.ignore == mode
):
return RandSaturation()
elif transform_item.name == "contrast" and not (
transform_item.ignore is True or transform_item.ignore == mode
):
return RandContrast()
elif transform_item.ignore is True or transform_item.ignore == mode:
return None
raise ValueError("Unknown transform_item {}".format(transform_item))
def get_transforms(opts, mode, domain):
"""Get all the transform functions listed in opts.data.transforms
using get_transform(transform_item, mode)
"""
transforms = []
color_jittering_transforms = ["brightness", "saturation", "contrast"]
for t in opts.data.transforms:
if t.name not in color_jittering_transforms:
transforms.append(get_transform(t, mode))
if "p" not in opts.tasks and mode == "train":
for t in opts.data.transforms:
if t.name in color_jittering_transforms:
transforms.append(get_transform(t, mode))
transforms += [Normalize(opts), BucketizeDepth(opts, domain)]
transforms = [t for t in transforms if t is not None]
return transforms
# ----- Adapted functions from https://github.com/mit-han-lab/data-efficient-gans -----#
def rand_brightness(tensor, is_diff_augment=False):
if is_diff_augment:
assert len(tensor.shape) == 4
type_ = tensor.dtype
device_ = tensor.device
rand_tens = torch.rand(tensor.size(0), 1, 1, 1, dtype=type_, device=device_)
return tensor + (rand_tens - 0.5)
else:
factor = random.uniform(0.5, 1.5)
tensor = adjust_brightness(tensor, brightness_factor=factor)
# dummy pixels to fool scaling and preserve range
tensor[:, :, 0, 0] = 1.0
tensor[:, :, -1, -1] = 0.0
return tensor
def rand_saturation(tensor, is_diff_augment=False):
if is_diff_augment:
assert len(tensor.shape) == 4
type_ = tensor.dtype
device_ = tensor.device
rand_tens = torch.rand(tensor.size(0), 1, 1, 1, dtype=type_, device=device_)
x_mean = tensor.mean(dim=1, keepdim=True)
return (tensor - x_mean) * (rand_tens * 2) + x_mean
else:
factor = random.uniform(0.5, 1.5)
tensor = adjust_saturation(tensor, saturation_factor=factor)
# dummy pixels to fool scaling and preserve range
tensor[:, :, 0, 0] = 1.0
tensor[:, :, -1, -1] = 0.0
return tensor
def rand_contrast(tensor, is_diff_augment=False):
if is_diff_augment:
assert len(tensor.shape) == 4
type_ = tensor.dtype
device_ = tensor.device
rand_tens = torch.rand(tensor.size(0), 1, 1, 1, dtype=type_, device=device_)
x_mean = tensor.mean(dim=[1, 2, 3], keepdim=True)
return (tensor - x_mean) * (rand_tens + 0.5) + x_mean
else:
factor = random.uniform(0.5, 1.5)
tensor = adjust_contrast(tensor, contrast_factor=factor)
# dummy pixels to fool scaling and preserve range
tensor[:, :, 0, 0] = 1.0
tensor[:, :, -1, -1] = 0.0
return tensor
def rand_cutout(tensor, ratio=0.5):
assert len(tensor.shape) == 4, "For rand cutout, tensor must be 4D."
type_ = tensor.dtype
device_ = tensor.device
cutout_size = int(tensor.size(-2) * ratio + 0.5), int(tensor.size(-1) * ratio + 0.5)
grid_batch, grid_x, grid_y = torch.meshgrid(
torch.arange(tensor.size(0), dtype=torch.long, device=device_),
torch.arange(cutout_size[0], dtype=torch.long, device=device_),
torch.arange(cutout_size[1], dtype=torch.long, device=device_),
)
size_ = [tensor.size(0), 1, 1]
offset_x = torch.randint(
0,
tensor.size(-2) + (1 - cutout_size[0] % 2),
size=size_,
device=device_,
)
offset_y = torch.randint(
0,
tensor.size(-1) + (1 - cutout_size[1] % 2),
size=size_,
device=device_,
)
grid_x = torch.clamp(
grid_x + offset_x - cutout_size[0] // 2, min=0, max=tensor.size(-2) - 1
)
grid_y = torch.clamp(
grid_y + offset_y - cutout_size[1] // 2, min=0, max=tensor.size(-1) - 1
)
mask = torch.ones(
tensor.size(0), tensor.size(2), tensor.size(3), dtype=type_, device=device_
)
mask[grid_batch, grid_x, grid_y] = 0
return tensor * mask.unsqueeze(1)
def rand_translation(tensor, ratio=0.125):
assert len(tensor.shape) == 4, "For rand translation, tensor must be 4D."
device_ = tensor.device
shift_x, shift_y = (
int(tensor.size(2) * ratio + 0.5),
int(tensor.size(3) * ratio + 0.5),
)
translation_x = torch.randint(
-shift_x, shift_x + 1, size=[tensor.size(0), 1, 1], device=device_
)
translation_y = torch.randint(
-shift_y, shift_y + 1, size=[tensor.size(0), 1, 1], device=device_
)
grid_batch, grid_x, grid_y = torch.meshgrid(
torch.arange(tensor.size(0), dtype=torch.long, device=device_),
torch.arange(tensor.size(2), dtype=torch.long, device=device_),
torch.arange(tensor.size(3), dtype=torch.long, device=device_),
)
grid_x = torch.clamp(grid_x + translation_x + 1, 0, tensor.size(2) + 1)
grid_y = torch.clamp(grid_y + translation_y + 1, 0, tensor.size(3) + 1)
x_pad = F.pad(tensor, [1, 1, 1, 1, 0, 0, 0, 0])
tensor = (
x_pad.permute(0, 2, 3, 1)
.contiguous()[grid_batch, grid_x, grid_y]
.permute(0, 3, 1, 2)
)
return tensor
class DiffTransforms:
def __init__(self, diff_aug_opts):
self.do_color_jittering = diff_aug_opts.do_color_jittering
self.do_cutout = diff_aug_opts.do_cutout
self.do_translation = diff_aug_opts.do_translation
self.cutout_ratio = diff_aug_opts.cutout_ratio
self.translation_ratio = diff_aug_opts.translation_ratio
def __call__(self, tensor):
if self.do_color_jittering:
tensor = rand_brightness(tensor, is_diff_augment=True)
tensor = rand_contrast(tensor, is_diff_augment=True)
tensor = rand_saturation(tensor, is_diff_augment=True)
if self.do_translation:
tensor = rand_translation(tensor, ratio=self.translation_ratio)
if self.do_cutout:
tensor = rand_cutout(tensor, ratio=self.cutout_ratio)
return tensor