climategan / climategan /eval_metrics.py
NimaBoscarino's picture
copy the climategan repo in here
6e601ed
raw history blame
No virus
18.2 kB
import cv2
import numpy as np
import torch
from skimage import filters
from sklearn.metrics.pairwise import euclidean_distances
import matplotlib.pyplot as plt
import seaborn as sns
from copy import deepcopy
# ------------------------------------------------------------------------------
# ----- Evaluation metrics for a pair of binary mask images (pred, target) -----
# ------------------------------------------------------------------------------
def get_accuracy(arr1, arr2):
"""pixel accuracy
Args:
arr1 (np.array)
arr2 (np.array)
"""
return (arr1 == arr2).sum() / arr1.size
def trimap(pred_im, gt_im, thickness=8):
"""Compute accuracy in a region of thickness around the contours
for binary images (0-1 values)
Args:
pred_im (Image): Prediction
gt_im (Image): Target
thickness (int, optional): [description]. Defaults to 8.
"""
W, H = gt_im.size
contours, hierarchy = cv2.findContours(
np.array(gt_im), mode=cv2.RETR_TREE, method=cv2.CHAIN_APPROX_SIMPLE
)
mask_contour = np.zeros((H, W), dtype=np.int32)
cv2.drawContours(
mask_contour, contours, -1, (1), thickness=thickness, hierarchy=hierarchy
)
gt_contour = np.array(gt_im)[np.where(mask_contour > 0)]
pred_contour = np.array(pred_im)[np.where(mask_contour > 0)]
return get_accuracy(pred_contour, gt_contour)
def iou(pred_im, gt_im):
"""
IoU for binary masks (0-1 values)
Args:
pred_im ([type]): [description]
gt_im ([type]): [description]
"""
pred = np.array(pred_im)
gt = np.array(gt_im)
intersection = (pred * gt).sum()
union = (pred + gt).sum() - intersection
return intersection / union
def f1_score(pred_im, gt_im):
pred = np.array(pred_im)
gt = np.array(gt_im)
intersection = (pred * gt).sum()
return 2 * intersection / (pred + gt).sum()
def accuracy(pred_im, gt_im):
pred = np.array(pred_im)
gt = np.array(gt_im)
if len(gt_im.shape) == 4:
assert gt_im.shape[1] == 1
gt_im = gt_im[:, 0, :, :]
if len(pred.shape) > len(gt_im.shape):
pred = np.argmax(pred, axis=1)
return float((pred == gt).sum()) / gt.size
def mIOU(pred, label, average="macro"):
"""
Adapted from:
https://stackoverflow.com/questions/62461379/multiclass-semantic-segmentation-model-evaluation
Compute the mean IOU from pred and label tensors
pred is a tensor N x C x H x W with logits (softmax will be applied)
and label is a N x H x W tensor with int labels per pixel
this does the same as sklearn's jaccard_score function if you choose average="macro"
Args:
pred (torch.tensor): predicted logits
label (torch.tensor): labels
average: "macro" or "weighted"
Returns:
float: mIOU, can be nan
"""
num_classes = pred.shape[-3]
pred = torch.argmax(pred, dim=1).squeeze(1)
present_iou_list = list()
pred = pred.view(-1)
label = label.view(-1)
# Note: Following for loop goes from 0 to (num_classes-1)
# and ignore_index is num_classes, thus ignore_index is
# not considered in computation of IoU.
interesting_classes = (
[*range(num_classes)] if num_classes > 2 else [int(label.max().item())]
)
weights = []
for sem_class in interesting_classes:
pred_inds = pred == sem_class
target_inds = label == sem_class
if (target_inds.long().sum().item() > 0) or (pred_inds.long().sum().item() > 0):
intersection_now = (pred_inds[target_inds]).long().sum().item()
union_now = (
pred_inds.long().sum().item()
+ target_inds.long().sum().item()
- intersection_now
)
weights.append(pred_inds.long().sum().item())
iou_now = float(intersection_now) / float(union_now)
present_iou_list.append(iou_now)
if not present_iou_list:
return float("nan")
elif average == "weighted":
weighted_avg = np.sum(np.multiply(weights, present_iou_list) / np.sum(weights))
return weighted_avg
else:
return np.mean(present_iou_list)
def masker_classification_metrics(
pred, label, labels_dict={"cannot": 0, "must": 1, "may": 2}
):
"""
Classification metrics for the masker, and the corresponding maps. If the
predictions are soft, the errors are weighted accordingly. Metrics computed:
tpr : float
True positive rate
tpt : float
True positive total (divided by total population)
tnr : float
True negative rate
tnt : float
True negative total (divided by total population)
fpr : float
False positive rate: rate of predicted mask on cannot flood
fpt : float
False positive total (divided by total population)
fnr : float
False negative rate: rate of missed mask on must flood
fnt : float
False negative total (divided by total population)
mnr : float
"May" negative rate (labeled as "may", predicted as no-mask)
mpr : float
"May" positive rate (labeled as "may", predicted as mask)
accuracy : float
Accuracy
error : float
Error
precision : float
Precision, considering only cannot and must flood labels
f05 : float
F0.5 score, considering only cannot and must flood labels
accuracy_must_may : float
Accuracy considering only the must and may areas
Parameters
----------
pred : array-like
Mask prediction
label : array-like
Mask ground truth labels
labels_dict : dict
A dictionary with the identifier of each class (cannot, must, may)
Returns
-------
metrics_dict : dict
A dictionary with metric name and value pairs
maps_dict : dict
A dictionary containing the metric maps
"""
tp_map = pred * np.asarray(label == labels_dict["must"], dtype=int)
tpr = np.sum(tp_map) / np.sum(label == labels_dict["must"])
tpt = np.sum(tp_map) / np.prod(label.shape)
tn_map = (1.0 - pred) * np.asarray(label == labels_dict["cannot"], dtype=int)
tnr = np.sum(tn_map) / np.sum(label == labels_dict["cannot"])
tnt = np.sum(tn_map) / np.prod(label.shape)
fp_map = pred * np.asarray(label == labels_dict["cannot"], dtype=int)
fpr = np.sum(fp_map) / np.sum(label == labels_dict["cannot"])
fpt = np.sum(fp_map) / np.prod(label.shape)
fn_map = (1.0 - pred) * np.asarray(label == labels_dict["must"], dtype=int)
fnr = np.sum(fn_map) / np.sum(label == labels_dict["must"])
fnt = np.sum(fn_map) / np.prod(label.shape)
may_neg_map = (1.0 - pred) * np.asarray(label == labels_dict["may"], dtype=int)
may_pos_map = pred * np.asarray(label == labels_dict["may"], dtype=int)
mnr = np.sum(may_neg_map) / np.sum(label == labels_dict["may"])
mpr = np.sum(may_pos_map) / np.sum(label == labels_dict["may"])
accuracy = tpt + tnt
error = fpt + fnt
# Assertions
assert np.isclose(tpr, 1.0 - fnr), "TPR: {:.4f}, FNR: {:.4f}".format(tpr, fnr)
assert np.isclose(tnr, 1.0 - fpr), "TNR: {:.4f}, FPR: {:.4f}".format(tnr, fpr)
assert np.isclose(mpr, 1.0 - mnr), "MPR: {:.4f}, MNR: {:.4f}".format(mpr, mnr)
precision = np.sum(tp_map) / (np.sum(tp_map) + np.sum(fp_map) + 1e-9)
beta = 0.5
f05 = ((1 + beta ** 2) * precision * tpr) / (beta ** 2 * precision + tpr + 1e-9)
accuracy_must_may = (np.sum(tp_map) + np.sum(may_neg_map)) / (
np.sum(label == labels_dict["must"]) + np.sum(label == labels_dict["may"])
)
metrics_dict = {
"tpr": tpr,
"tpt": tpt,
"tnr": tnr,
"tnt": tnt,
"fpr": fpr,
"fpt": fpt,
"fnr": fnr,
"fnt": fnt,
"mpr": mpr,
"mnr": mnr,
"accuracy": accuracy,
"error": error,
"precision": precision,
"f05": f05,
"accuracy_must_may": accuracy_must_may,
}
maps_dict = {
"tp": tp_map,
"tn": tn_map,
"fp": fp_map,
"fn": fn_map,
"may_pos": may_pos_map,
"may_neg": may_neg_map,
}
return metrics_dict, maps_dict
def pred_cannot(pred, label, label_cannot=0):
"""
Metric for the masker: Computes false positive rate and its map. If the
predictions are soft, the errors are weighted accordingly.
Parameters
----------
pred : array-like
Mask prediction
label : array-like
Mask ground truth labels
label_cannot : int
The label index of "cannot flood"
Returns
-------
fp_map : array-like
The map of false positives: predicted mask on cannot flood
fpr : float
False positive rate: rate of predicted mask on cannot flood
"""
fp_map = pred * np.asarray(label == label_cannot, dtype=int)
fpr = np.sum(fp_map) / np.sum(label == label_cannot)
return fp_map, fpr
def missed_must(pred, label, label_must=1):
"""
Metric for the masker: Computes false negative rate and its map. If the
predictions are soft, the errors are weighted accordingly.
Parameters
----------
pred : array-like
Mask prediction
label : array-like
Mask ground truth labels
label_must : int
The label index of "must flood"
Returns
-------
fn_map : array-like
The map of false negatives: missed mask on must flood
fnr : float
False negative rate: rate of missed mask on must flood
"""
fn_map = (1.0 - pred) * np.asarray(label == label_must, dtype=int)
fnr = np.sum(fn_map) / np.sum(label == label_must)
return fn_map, fnr
def may_flood(pred, label, label_may=2):
"""
Metric for the masker: Computes "may" negative and "may" positive rates and their
map. If the predictions are soft, the "errors" are weighted accordingly.
Parameters
----------
pred : array-like
Mask prediction
label : array-like
Mask ground truth labels
label_may : int
The label index of "may flood"
Returns
-------
may_neg_map : array-like
The map of "may" negatives
may_pos_map : array-like
The map of "may" positives
mnr : float
"May" negative rate
mpr : float
"May" positive rate
"""
may_neg_map = (1.0 - pred) * np.asarray(label == label_may, dtype=int)
may_pos_map = pred * np.asarray(label == label_may, dtype=int)
mnr = np.sum(may_neg_map) / np.sum(label == label_may)
mpr = np.sum(may_pos_map) / np.sum(label == label_may)
return may_neg_map, may_pos_map, mnr, mpr
def masker_metrics(pred, label, label_cannot=0, label_must=1):
"""
Computes a set of metrics for the masker
Parameters
----------
pred : array-like
Mask prediction
label : array-like
Mask ground truth labels
label_must : int
The label index of "must flood"
label_cannot : int
The label index of "cannot flood"
Returns
-------
tpr : float
True positive rate
tnr : float
True negative rate
precision : float
Precision, considering only cannot and must flood labels
f1 : float
F1 score, considering only cannot and must flood labels
"""
tp_map = pred * np.asarray(label == label_must, dtype=int)
tpr = np.sum(tp_map) / np.sum(label == label_must)
tn_map = (1.0 - pred) * np.asarray(label == label_cannot, dtype=int)
tnr = np.sum(tn_map) / np.sum(label == label_cannot)
fp_map = pred * np.asarray(label == label_cannot, dtype=int)
fn_map = (1.0 - pred) * np.asarray(label == label_must, dtype=int) # noqa: F841
precision = np.sum(tp_map) / (np.sum(tp_map) + np.sum(fp_map))
f1 = 2 * (precision * tpr) / (precision + tpr)
return tpr, tnr, precision, f1
def get_confusion_matrix(tpr, tnr, fpr, fnr, mpr, mnr):
"""
Constructs the confusion matrix of a masker prediction over a set of samples
Parameters
----------
tpr : vector-like
True positive rate
tnr : vector-like
True negative rate
fpr : vector-like
False positive rate
fnr : vector-like
False negative rate
mpr : vector-like
"May" positive rate
mnr : vector-like
"May" negative rate
Returns
-------
confusion_matrix : 3x3 array
Confusion matrix: [i, j] = [pred, true]
| tnr fnr mnr |
| fpr tpr mpr |
| 0. 0, 0, |
confusion_matrix_std : 3x3 array
Standard deviation of the confusion matrix
"""
# Compute mean and standard deviations over all samples
tpr_m = np.mean(tpr)
tpr_s = np.std(tpr)
tnr_m = np.mean(tnr)
tnr_s = np.std(tnr)
fpr_m = np.mean(fpr)
fpr_s = np.std(fpr)
fnr_m = np.mean(fnr)
fnr_s = np.std(fnr)
mpr_m = np.mean(mpr)
mpr_s = np.std(mpr)
mnr_m = np.mean(mnr)
mnr_s = np.std(mnr)
# Assertions
assert np.isclose(tpr_m, 1.0 - fnr_m), "TPR: {:.4f}, FNR: {:.4f}".format(
tpr_m, fnr_m
)
assert np.isclose(tnr_m, 1.0 - fpr_m), "TNR: {:.4f}, FPR: {:.4f}".format(
tnr_m, fpr_m
)
assert np.isclose(mpr_m, 1.0 - mnr_m), "MPR: {:.4f}, MNR: {:.4f}".format(
mpr_m, mnr_m
)
# Fill confusion matrix
confusion_matrix = np.zeros((3, 3))
confusion_matrix[0, 0] = tnr_m
confusion_matrix[0, 1] = fnr_m
confusion_matrix[0, 2] = mnr_m
confusion_matrix[1, 0] = fpr_m
confusion_matrix[1, 1] = tpr_m
confusion_matrix[1, 2] = mpr_m
confusion_matrix[2, 2] = 0.0
# Standard deviation
confusion_matrix_std = np.zeros((3, 3))
confusion_matrix_std[0, 0] = tnr_s
confusion_matrix_std[0, 1] = fnr_s
confusion_matrix_std[0, 2] = mnr_s
confusion_matrix_std[1, 0] = fpr_s
confusion_matrix_std[1, 1] = tpr_s
confusion_matrix_std[1, 2] = mpr_s
confusion_matrix_std[2, 2] = 0.0
return confusion_matrix, confusion_matrix_std
def edges_coherence_std_min(pred, label, label_must=1, bin_th=0.5):
"""
The standard deviation of the minimum distance between the edge of the prediction
and the edge of the "must flood" label.
Parameters
----------
pred : array-like
Mask prediction
label : array-like
Mask ground truth labels
label_must : int
The label index of "must flood"
bin_th : float
The threshold for the binarization of the prediction
Returns
-------
metric : float
The value of the metric
pred_edge : array-like
The edges images of the prediction, for visualization
label_edge : array-like
The edges images of the "must flood" label, for visualization
"""
# Keep must flood label only
label = deepcopy(label)
label[label != label_must] = -1
label[label == label_must] = 1
label[label != label_must] = 0
label = np.asarray(label, dtype=float)
# Binarize prediction
pred = np.asarray(pred > bin_th, dtype=float)
# Compute edges
pred = filters.sobel(pred)
label = filters.sobel(label)
# Location of edges
pred_coord = np.argwhere(pred > 0)
label_coord = np.argwhere(label > 0)
# Handle blank predictions
if pred_coord.shape[0] == 0:
return 1.0, pred, label
# Normalized pairwise distances between pred and label
dist_mat = np.divide(euclidean_distances(pred_coord, label_coord), pred.shape[0])
# Standard deviation of the minimum distance from pred to label
edge_coherence = np.std(np.min(dist_mat, axis=1))
return edge_coherence, pred, label
def boxplot_metric(
output_filename,
df,
metric,
dict_metrics,
do_stripplot=False,
dict_models=None,
dpi=300,
**snskwargs
):
f = plt.figure(dpi=dpi)
if do_stripplot:
ax = sns.boxplot(x="model", y=metric, data=df, fliersize=0.0, **snskwargs)
ax = sns.stripplot(
x="model", y=metric, data=df, size=2.0, color="gray", **snskwargs
)
else:
ax = sns.boxplot(x="model", y=metric, data=df, **snskwargs)
# Set axes labels
ax.set_xlabel("Models", rotation=0, fontsize="medium")
ax.set_ylabel(dict_metrics[metric], rotation=90, fontsize="medium")
# Spines
sns.despine(left=True, bottom=True)
# X-Tick labels
if dict_models:
xticklabels = [dict_models[t.get_text()] for t in ax.get_xticklabels()]
ax.set_xticklabels(
xticklabels,
rotation=20,
verticalalignment="top",
horizontalalignment="right",
fontsize="xx-small",
)
f.savefig(
output_filename,
dpi=f.dpi,
bbox_inches="tight",
facecolor="white",
transparent=False,
)
f.clear()
plt.close(f)
def clustermap_metric(
output_filename,
df,
metric,
dict_metrics,
method="average",
cluster_metric="euclidean",
dict_models=None,
dpi=300,
**snskwargs
):
ax_grid = sns.clustermap(data=df, method=method, metric=cluster_metric, **snskwargs)
ax_heatmap = ax_grid.ax_heatmap
ax_cbar = ax_grid.ax_cbar
# Set axes labels
ax_heatmap.set_xlabel("Models", rotation=0, fontsize="medium")
ax_heatmap.set_ylabel("Images", rotation=90, fontsize="medium")
# Set title
ax_cbar.set_title(dict_metrics[metric], rotation=0, fontsize="x-large")
# X-Tick labels
if dict_models:
xticklabels = [dict_models[t.get_text()] for t in ax_heatmap.get_xticklabels()]
ax_heatmap.set_xticklabels(
xticklabels,
rotation=20,
verticalalignment="top",
horizontalalignment="right",
fontsize="small",
)
ax_grid.fig.savefig(
output_filename,
dpi=dpi,
bbox_inches="tight",
facecolor="white",
transparent=False,
)
ax_grid.fig.clear()
plt.close(ax_grid.fig)