NilEneb's picture
Upload folder using huggingface_hub
ad93086 verified
# from transformers import BertPreTrainedModel, BertConfig
# import torch.nn as nn
# import torch
# from transformers.models.xlm_roberta.configuration_xlm_roberta import XLMRobertaConfig
# from transformers import XLMRobertaModel,XLMRobertaTokenizer
# from typing import Optional
#
# from modules import torch_utils
#
#
# class BertSeriesConfig(BertConfig):
# def __init__(self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, position_embedding_type="absolute", use_cache=True, classifier_dropout=None,project_dim=512, pooler_fn="average",learn_encoder=False,model_type='bert',**kwargs):
#
# super().__init__(vocab_size, hidden_size, num_hidden_layers, num_attention_heads, intermediate_size, hidden_act, hidden_dropout_prob, attention_probs_dropout_prob, max_position_embeddings, type_vocab_size, initializer_range, layer_norm_eps, pad_token_id, position_embedding_type, use_cache, classifier_dropout, **kwargs)
# self.project_dim = project_dim
# self.pooler_fn = pooler_fn
# self.learn_encoder = learn_encoder
#
# class RobertaSeriesConfig(XLMRobertaConfig):
# def __init__(self, pad_token_id=1, bos_token_id=0, eos_token_id=2,project_dim=512,pooler_fn='cls',learn_encoder=False, **kwargs):
# super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
# self.project_dim = project_dim
# self.pooler_fn = pooler_fn
# self.learn_encoder = learn_encoder
#
#
# class BertSeriesModelWithTransformation(BertPreTrainedModel):
#
# _keys_to_ignore_on_load_unexpected = [r"pooler"]
# _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
# config_class = BertSeriesConfig
#
# def __init__(self, config=None, **kargs):
# # modify initialization for autoloading
# if config is None:
# config = XLMRobertaConfig()
# config.attention_probs_dropout_prob= 0.1
# config.bos_token_id=0
# config.eos_token_id=2
# config.hidden_act='gelu'
# config.hidden_dropout_prob=0.1
# config.hidden_size=1024
# config.initializer_range=0.02
# config.intermediate_size=4096
# config.layer_norm_eps=1e-05
# config.max_position_embeddings=514
#
# config.num_attention_heads=16
# config.num_hidden_layers=24
# config.output_past=True
# config.pad_token_id=1
# config.position_embedding_type= "absolute"
#
# config.type_vocab_size= 1
# config.use_cache=True
# config.vocab_size= 250002
# config.project_dim = 768
# config.learn_encoder = False
# super().__init__(config)
# self.roberta = XLMRobertaModel(config)
# self.transformation = nn.Linear(config.hidden_size,config.project_dim)
# self.pre_LN=nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# self.tokenizer = XLMRobertaTokenizer.from_pretrained('xlm-roberta-large')
# self.pooler = lambda x: x[:,0]
# self.post_init()
#
# def encode(self,c):
# device = torch_utils.get_param(self).device
# text = self.tokenizer(c,
# truncation=True,
# max_length=77,
# return_length=False,
# return_overflowing_tokens=False,
# padding="max_length",
# return_tensors="pt")
# text["input_ids"] = torch.tensor(text["input_ids"]).to(device)
# text["attention_mask"] = torch.tensor(
# text['attention_mask']).to(device)
# features = self(**text)
# return features['projection_state']
#
# def forward(
# self,
# input_ids: Optional[torch.Tensor] = None,
# attention_mask: Optional[torch.Tensor] = None,
# token_type_ids: Optional[torch.Tensor] = None,
# position_ids: Optional[torch.Tensor] = None,
# head_mask: Optional[torch.Tensor] = None,
# inputs_embeds: Optional[torch.Tensor] = None,
# encoder_hidden_states: Optional[torch.Tensor] = None,
# encoder_attention_mask: Optional[torch.Tensor] = None,
# output_attentions: Optional[bool] = None,
# return_dict: Optional[bool] = None,
# output_hidden_states: Optional[bool] = None,
# ) :
# r"""
# """
#
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict
#
#
# outputs = self.roberta(
# input_ids=input_ids,
# attention_mask=attention_mask,
# token_type_ids=token_type_ids,
# position_ids=position_ids,
# head_mask=head_mask,
# inputs_embeds=inputs_embeds,
# encoder_hidden_states=encoder_hidden_states,
# encoder_attention_mask=encoder_attention_mask,
# output_attentions=output_attentions,
# output_hidden_states=True,
# return_dict=return_dict,
# )
#
# # last module outputs
# sequence_output = outputs[0]
#
#
# # project every module
# sequence_output_ln = self.pre_LN(sequence_output)
#
# # pooler
# pooler_output = self.pooler(sequence_output_ln)
# pooler_output = self.transformation(pooler_output)
# projection_state = self.transformation(outputs.last_hidden_state)
#
# return {
# 'pooler_output':pooler_output,
# 'last_hidden_state':outputs.last_hidden_state,
# 'hidden_states':outputs.hidden_states,
# 'attentions':outputs.attentions,
# 'projection_state':projection_state,
# 'sequence_out': sequence_output
# }
#
#
# class RobertaSeriesModelWithTransformation(BertSeriesModelWithTransformation):
# base_model_prefix = 'roberta'
# config_class= RobertaSeriesConfig