NikosKprl commited on
Commit
31ed046
·
verified ·
1 Parent(s): c85c268

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -12
app.py CHANGED
@@ -18,18 +18,18 @@ folder_path = '/home/user/app/qids_folder'
18
 
19
  if not os.path.exists(folder_path):
20
  os.mkdir(folder_path)
21
- print(f"Folder 'qids_folder' created at {folder_path}")
22
  else:
23
- print(f"Folder 'qids_folder' already exists.")
24
 
25
 
26
  folder_path_1 = '/home/user/app/info_extraction'
27
 
28
  if not os.path.exists(folder_path_1):
29
  os.mkdir(folder_path_1)
30
- print(f"Folder 'qids_folder' created at {folder_path_1}")
31
  else:
32
- print(f"Folder 'qids_folder' already exists.")
33
 
34
  model = SentenceTransformer("Lajavaness/bilingual-embedding-large", trust_remote_code=True)
35
 
@@ -297,8 +297,8 @@ def main_cli():
297
  st.caption("This Web Application is part of my master dissertation.")
298
 
299
 
300
- input_sentence_user = st.text_input("Enter the sentence:", "")
301
- input_mention_user = st.text_input("Enter the mention:", "")
302
  single = st.selectbox("Search each word individually?", ['Yes', 'No'], index=1)
303
  combi = st.selectbox("Make combinations of each word?", ['Yes', 'No'], index=1)
304
  disambi = st.selectbox("Run acronym disambiguation? (Enable it if the mention is nested)", ['Yes', 'No'], index=0)
@@ -306,7 +306,7 @@ def main_cli():
306
 
307
  if st.button("Run Entity Linking"):
308
  if input_sentence_user and input_mention_user:
309
- # Example logic: check if the mention is in the sentence
310
  if input_mention_user in input_sentence_user:
311
  st.write("Applying Data Normalization module... (1/5)")
312
  # Data Normalization
@@ -421,13 +421,13 @@ def main_cli():
421
  context = i.split(":")[-1].strip()
422
  list_with_contexts.append(context)
423
 
424
- # Candidate Generation & Information Extraction
425
  async def big_main(mention, single, combi):
426
  mention = mention.split(",")
427
- st.write("Applying Candidate Generation module... (2/5)")
428
  for i in mention:
429
  await mains(i, single, combi)
430
- st.write("Applying Information Extraction module... (3/5)")
431
  for i in mention:
432
  await main(i)
433
 
@@ -464,7 +464,7 @@ def main_cli():
464
  lista_1.append({k: emb_mean})
465
 
466
  sorted_data = sorted(lista_1, key=lambda x: list(x.values())[0], reverse=True)
467
- st.write(f"Applying Entity Linking module... (4/5) [{number}/{len(list_with_full_names)}]")
468
  if sorted_data:
469
  sorted_top = sorted_data[0]
470
  for k, v in sorted_top.items():
@@ -510,7 +510,8 @@ def main_cli():
510
  execution_time = end_time - start_time
511
  ETA = time.strftime("%H:%M:%S", time.gmtime(execution_time))
512
  st.write(f"Execution time: {ETA}")
513
-
 
514
  folder_path = "qids_folder"
515
  for filename in os.listdir(folder_path):
516
  file_path = os.path.join(folder_path, filename)
 
18
 
19
  if not os.path.exists(folder_path):
20
  os.mkdir(folder_path)
21
+ print(f"folder created at {folder_path}")
22
  else:
23
+ print(f"folder already exists.")
24
 
25
 
26
  folder_path_1 = '/home/user/app/info_extraction'
27
 
28
  if not os.path.exists(folder_path_1):
29
  os.mkdir(folder_path_1)
30
+ print(f"Folder created at {folder_path_1}")
31
  else:
32
+ print(f"folder already exists.")
33
 
34
  model = SentenceTransformer("Lajavaness/bilingual-embedding-large", trust_remote_code=True)
35
 
 
297
  st.caption("This Web Application is part of my master dissertation.")
298
 
299
 
300
+ input_sentence_user = st.text_input("Enter a sentence:", "")
301
+ input_mention_user = st.text_input("Enter a textural reference (mention) that is inside the sentence:", "")
302
  single = st.selectbox("Search each word individually?", ['Yes', 'No'], index=1)
303
  combi = st.selectbox("Make combinations of each word?", ['Yes', 'No'], index=1)
304
  disambi = st.selectbox("Run acronym disambiguation? (Enable it if the mention is nested)", ['Yes', 'No'], index=0)
 
306
 
307
  if st.button("Run Entity Linking"):
308
  if input_sentence_user and input_mention_user:
309
+ # check if the mention is in the sentence
310
  if input_mention_user in input_sentence_user:
311
  st.write("Applying Data Normalization module... (1/5)")
312
  # Data Normalization
 
421
  context = i.split(":")[-1].strip()
422
  list_with_contexts.append(context)
423
 
424
+ # Candidate Retrieval & Information Gathering
425
  async def big_main(mention, single, combi):
426
  mention = mention.split(",")
427
+ st.write("Applying Candidate Retrieval module... (2/5)")
428
  for i in mention:
429
  await mains(i, single, combi)
430
+ st.write("Applying Information Gathering module... (3/5)")
431
  for i in mention:
432
  await main(i)
433
 
 
464
  lista_1.append({k: emb_mean})
465
 
466
  sorted_data = sorted(lista_1, key=lambda x: list(x.values())[0], reverse=True)
467
+ st.write(f"Applying Candidate Matching module... (4/5) [{number}/{len(list_with_full_names)}]")
468
  if sorted_data:
469
  sorted_top = sorted_data[0]
470
  for k, v in sorted_top.items():
 
510
  execution_time = end_time - start_time
511
  ETA = time.strftime("%H:%M:%S", time.gmtime(execution_time))
512
  st.write(f"Execution time: {ETA}")
513
+
514
+ # i think this part can be removed now
515
  folder_path = "qids_folder"
516
  for filename in os.listdir(folder_path):
517
  file_path = os.path.join(folder_path, filename)