PhysicsTutor / app.py
NikilDGr8's picture
Update app.py
e2fd79a verified
import gradio as gr
from checker import checker
from huggingface_hub import InferenceClient
# Initialize the Hugging Face Inference Client
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message()}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
# Function to handle system message and inform the user about the bot's specialty
def system_message():
return "I am a physics chatbot. I can help you with questions related to physics."
# Define the Gradio Chat Interface
demo = gr.Interface(
fn=respond,
inputs=[
gr.Textbox(value="You are chatting with a physics chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, default=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, default=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, default=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
outputs=gr.Textbox(label="Chatbot Response"),
title="Physics Chatbot",
description="Ask questions related to physics!",
system_message=system_message
)
if __name__ == "__main__":
demo.launch()