Spaces:
Sleeping
Sleeping
# from langchain_community.embeddings import HuggingFaceEmbeddings | |
# from langchain_community.vectorstores import FAISS | |
# from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader | |
# from langchain.text_splitter import RecursiveCharacterTextSplitter | |
# DATA_PATH = 'data/' | |
# DB_FAISS_PATH = 'vectorstore/db_faiss' | |
# # Create vector database | |
# def create_vector_db(): | |
# loader = DirectoryLoader(DATA_PATH, | |
# glob='*.pdf', | |
# loader_cls=PyPDFLoader) | |
# documents = loader.load() | |
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, | |
# chunk_overlap=50) | |
# texts = text_splitter.split_documents(documents) | |
# embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2', | |
# model_kwargs={'device': 'cpu'}) | |
# db = FAISS.from_documents(texts, embeddings) | |
# db.save_local(DB_FAISS_PATH) | |
# if __name__ == "__main__": | |
# create_vector_db() |