Spaces:
Sleeping
Sleeping
Niharmahesh
commited on
Commit
•
458a95e
1
Parent(s):
d1c5054
Update app.py
Browse files
app.py
CHANGED
@@ -18,7 +18,11 @@ working_alphabets = ''.join(set(all_alphabets) - set(excluded_alphabets))
|
|
18 |
# Function to load the Random Forest model
|
19 |
@st.cache_resource
|
20 |
def load_model():
|
21 |
-
"""Load the Random Forest model
|
|
|
|
|
|
|
|
|
22 |
try:
|
23 |
return joblib.load('best_random_forest_model.pkl')
|
24 |
except Exception as e:
|
@@ -34,13 +38,13 @@ if model is None:
|
|
34 |
|
35 |
# Function to normalize landmarks
|
36 |
def normalize_landmarks(landmarks):
|
37 |
-
"""Normalize the
|
38 |
|
39 |
Args:
|
40 |
-
landmarks (np.ndarray):
|
41 |
|
42 |
Returns:
|
43 |
-
np.ndarray: Normalized
|
44 |
"""
|
45 |
center = np.mean(landmarks, axis=0)
|
46 |
landmarks_centered = landmarks - center
|
@@ -53,10 +57,10 @@ def calculate_angles(landmarks):
|
|
53 |
"""Calculate angles between hand landmarks.
|
54 |
|
55 |
Args:
|
56 |
-
landmarks (np.ndarray):
|
57 |
|
58 |
Returns:
|
59 |
-
list: List of
|
60 |
"""
|
61 |
angles = []
|
62 |
for i in range(20):
|
@@ -69,15 +73,13 @@ def calculate_angles(landmarks):
|
|
69 |
|
70 |
# Function to process image and predict alphabet
|
71 |
def process_and_predict(image):
|
72 |
-
"""Process the
|
73 |
|
74 |
Args:
|
75 |
-
image (np.ndarray): The
|
76 |
|
77 |
Returns:
|
78 |
-
tuple: (probabilities
|
79 |
-
the predicted probabilities for each class and landmarks
|
80 |
-
are the detected hand landmarks.
|
81 |
"""
|
82 |
mp_hands = mp.solutions.hands
|
83 |
with mp_hands.Hands(static_image_mode=True, max_num_hands=1, min_detection_confidence=0.5) as hands:
|
@@ -95,3 +97,119 @@ def process_and_predict(image):
|
|
95 |
probabilities = model.predict_proba(angles_df)[0]
|
96 |
return probabilities, landmarks
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
# Function to load the Random Forest model
|
19 |
@st.cache_resource
|
20 |
def load_model():
|
21 |
+
"""Load the pre-trained Random Forest model.
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
model: The loaded Random Forest model.
|
25 |
+
"""
|
26 |
try:
|
27 |
return joblib.load('best_random_forest_model.pkl')
|
28 |
except Exception as e:
|
|
|
38 |
|
39 |
# Function to normalize landmarks
|
40 |
def normalize_landmarks(landmarks):
|
41 |
+
"""Normalize the landmark coordinates.
|
42 |
|
43 |
Args:
|
44 |
+
landmarks (np.ndarray): The array of landmark coordinates.
|
45 |
|
46 |
Returns:
|
47 |
+
np.ndarray: Normalized landmark coordinates.
|
48 |
"""
|
49 |
center = np.mean(landmarks, axis=0)
|
50 |
landmarks_centered = landmarks - center
|
|
|
57 |
"""Calculate angles between hand landmarks.
|
58 |
|
59 |
Args:
|
60 |
+
landmarks (np.ndarray): The array of normalized landmark coordinates.
|
61 |
|
62 |
Returns:
|
63 |
+
list: List of angles between landmarks.
|
64 |
"""
|
65 |
angles = []
|
66 |
for i in range(20):
|
|
|
73 |
|
74 |
# Function to process image and predict alphabet
|
75 |
def process_and_predict(image):
|
76 |
+
"""Process the uploaded image to predict the ASL sign.
|
77 |
|
78 |
Args:
|
79 |
+
image (np.ndarray): The uploaded image in BGR format.
|
80 |
|
81 |
Returns:
|
82 |
+
tuple: (probabilities of each class, detected landmarks)
|
|
|
|
|
83 |
"""
|
84 |
mp_hands = mp.solutions.hands
|
85 |
with mp_hands.Hands(static_image_mode=True, max_num_hands=1, min_detection_confidence=0.5) as hands:
|
|
|
97 |
probabilities = model.predict_proba(angles_df)[0]
|
98 |
return probabilities, landmarks
|
99 |
|
100 |
+
return None, None
|
101 |
+
|
102 |
+
# Function to plot hand landmarks
|
103 |
+
def plot_hand_landmarks(landmarks, title):
|
104 |
+
"""Plot the detected hand landmarks.
|
105 |
+
|
106 |
+
Args:
|
107 |
+
landmarks (np.ndarray): The array of landmark coordinates.
|
108 |
+
title (str): The title for the plot.
|
109 |
+
|
110 |
+
Returns:
|
111 |
+
Figure: The matplotlib figure object with plotted landmarks.
|
112 |
+
"""
|
113 |
+
fig, ax = plt.subplots(figsize=(5, 5))
|
114 |
+
ax.scatter(landmarks[:, 0], landmarks[:, 1], c='blue', s=20)
|
115 |
+
mp_hands = mp.solutions.hands
|
116 |
+
for connection in mp_hands.HAND_CONNECTIONS:
|
117 |
+
start_idx = connection[0]
|
118 |
+
end_idx = connection[1]
|
119 |
+
ax.plot([landmarks[start_idx, 0], landmarks[end_idx, 0]],
|
120 |
+
[landmarks[start_idx, 1], landmarks[end_idx, 1]], 'r-', linewidth=1)
|
121 |
+
ax.invert_yaxis()
|
122 |
+
ax.set_title(title, fontsize=12)
|
123 |
+
ax.axis('off')
|
124 |
+
return fig
|
125 |
+
|
126 |
+
# README content
|
127 |
+
readme_content = f"""
|
128 |
+
## How it works
|
129 |
+
|
130 |
+
This ASL Recognition App uses image processing and machine learning to recognize American Sign Language (ASL) hand signs.
|
131 |
+
|
132 |
+
1. **Image Upload**: Users can upload an image of an ASL hand sign.
|
133 |
+
2. **Hand Detection**: The app uses MediaPipe to detect hand landmarks in the image.
|
134 |
+
3. **Feature Extraction**: Angles between hand landmarks are calculated and normalized.
|
135 |
+
4. **Prediction**: A Random Forest model predicts the ASL sign based on the extracted features.
|
136 |
+
5. **Visualization**: The app displays the detected hand landmarks and top predictions.
|
137 |
+
|
138 |
+
### Supported Alphabets
|
139 |
+
|
140 |
+
The app currently works for the following ASL alphabets:
|
141 |
+
{', '.join(working_alphabets)}
|
142 |
+
|
143 |
+
The app does not support or may not work correctly for:
|
144 |
+
{', '.join(excluded_alphabets)}
|
145 |
+
|
146 |
+
Note: The model's performance may vary and is subject to improvement.
|
147 |
+
|
148 |
+
The "View Hand Landmarks" tab allows users to see hand landmarks for pre-loaded ASL signs.
|
149 |
+
"""
|
150 |
+
|
151 |
+
# Streamlit app
|
152 |
+
st.title("ASL Recognition App")
|
153 |
+
|
154 |
+
# Display README content
|
155 |
+
st.sidebar.markdown(readme_content)
|
156 |
+
|
157 |
+
# Create tabs for different functionalities
|
158 |
+
tab1, tab2 = st.tabs(["Predict ASL Sign", "View Hand Landmarks"])
|
159 |
+
|
160 |
+
with tab1:
|
161 |
+
st.header("Predict ASL Sign")
|
162 |
+
uploaded_file = st.file_uploader("Upload an image of an ASL sign", type=["jpg", "jpeg", "png"])
|
163 |
+
|
164 |
+
if uploaded_file is not None:
|
165 |
+
try:
|
166 |
+
image = cv2.imdecode(np.frombuffer(uploaded_file.read(), np.uint8), 1)
|
167 |
+
if image is not None:
|
168 |
+
col1, col2 = st.columns(2)
|
169 |
+
with col1:
|
170 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
171 |
+
|
172 |
+
probabilities, landmarks = process_and_predict(image)
|
173 |
+
|
174 |
+
if probabilities is not None and landmarks is not None:
|
175 |
+
with col2:
|
176 |
+
st.subheader("Top 5 Predictions:")
|
177 |
+
top_indices = np.argsort(probabilities)[::-1][:5]
|
178 |
+
for i in top_indices:
|
179 |
+
st.write(f"{model.classes_[i]}: {probabilities[i]:.2f}")
|
180 |
+
|
181 |
+
fig = plot_hand_landmarks(landmarks, "Detected Hand Landmarks")
|
182 |
+
st.pyplot(fig)
|
183 |
+
else:
|
184 |
+
st.write("No hand detected in the image.")
|
185 |
+
else:
|
186 |
+
st.error("Failed to load the image. The file might be corrupted.")
|
187 |
+
except Exception as e:
|
188 |
+
st.error(f"An error occurred while processing the image: {str(e)}")
|
189 |
+
|
190 |
+
with tab2:
|
191 |
+
st.header("View Hand Landmarks")
|
192 |
+
|
193 |
+
selected_alphabets = st.multiselect("Select alphabets to view landmarks:", list(working_alphabets))
|
194 |
+
|
195 |
+
if selected_alphabets:
|
196 |
+
cols = st.columns(4) # 4 columns for smaller images
|
197 |
+
for idx, alphabet in enumerate(selected_alphabets):
|
198 |
+
with cols[idx % 4]:
|
199 |
+
image_path = os.path.join('asl test set', f'{alphabet.lower()}.jpeg')
|
200 |
+
if os.path.exists(image_path):
|
201 |
+
try:
|
202 |
+
image = cv2.imread(image_path)
|
203 |
+
if image is not None:
|
204 |
+
probabilities, landmarks = process_and_predict(image)
|
205 |
+
if landmarks is not None:
|
206 |
+
fig = plot_hand_landmarks(landmarks, f"Hand Landmarks for {alphabet}")
|
207 |
+
st.pyplot(fig)
|
208 |
+
else:
|
209 |
+
st.error(f"No hand detected for {alphabet}")
|
210 |
+
else:
|
211 |
+
st.error(f"Failed to load image for {alphabet}")
|
212 |
+
except Exception as e:
|
213 |
+
st.error(f"Error processing image for {alphabet}")
|
214 |
+
else:
|
215 |
+
st.error(f"Image not found for {alphabet}")
|