Spaces:
Sleeping
Sleeping
import streamlit as st | |
import cv2 | |
import numpy as np | |
import mediapipe as mp | |
import joblib | |
import pandas as pd | |
from numpy.linalg import norm | |
import matplotlib.pyplot as plt | |
import os | |
import base64 | |
st.set_page_config(layout="wide") | |
# Function to load the Random Forest model | |
def load_model(): | |
try: | |
return joblib.load('best_random_forest_model.pkl') | |
except Exception as e: | |
st.error(f"Error loading model: {e}") | |
return None | |
# Load the model using the cached function | |
model = load_model() | |
# Ensure the model is loaded before proceeding | |
if model is None: | |
st.stop() | |
# Function to normalize landmarks | |
def normalize_landmarks(landmarks): | |
center = np.mean(landmarks, axis=0) | |
landmarks_centered = landmarks - center | |
std_dev = np.std(landmarks_centered, axis=0) | |
landmarks_normalized = landmarks_centered / std_dev | |
return np.nan_to_num(landmarks_normalized) | |
# Function to calculate angles between landmarks | |
def calculate_angles(landmarks): | |
angles = [] | |
for i in range(20): | |
for j in range(i + 1, 21): | |
vector = landmarks[j] - landmarks[i] | |
angle_x = np.arccos(np.clip(vector[0] / norm(vector), -1.0, 1.0)) | |
angle_y = np.arccos(np.clip(vector[1] / norm(vector), -1.0, 1.0)) | |
angles.extend([angle_x, angle_y]) | |
return angles | |
# Function to process image and predict alphabet | |
def process_and_predict(image): | |
mp_hands = mp.solutions.hands | |
with mp_hands.Hands(static_image_mode=True, max_num_hands=1, min_detection_confidence=0.5) as hands: | |
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
results = hands.process(image_rgb) | |
if results.multi_hand_landmarks: | |
landmarks = np.array([[lm.x, lm.y] for lm in results.multi_hand_landmarks[0].landmark]) | |
landmarks_normalized = normalize_landmarks(landmarks) | |
angles = calculate_angles(landmarks_normalized) | |
angle_columns = [f'angle_{i}' for i in range(len(angles))] | |
angles_df = pd.DataFrame([angles], columns=angle_columns) | |
probabilities = model.predict_proba(angles_df)[0] | |
return probabilities, landmarks | |
return None, None | |
# Function to plot hand landmarks | |
def plot_hand_landmarks(landmarks, title): | |
fig, ax = plt.subplots(figsize=(10, 10)) | |
ax.scatter(landmarks[:, 0], landmarks[:, 1], c='blue', s=50) | |
mp_hands = mp.solutions.hands | |
for connection in mp_hands.HAND_CONNECTIONS: | |
start_idx = connection[0] | |
end_idx = connection[1] | |
ax.plot([landmarks[start_idx, 0], landmarks[end_idx, 0]], | |
[landmarks[start_idx, 1], landmarks[end_idx, 1]], 'r-', linewidth=2) | |
ax.invert_yaxis() | |
ax.set_title(title, fontsize=16) | |
ax.axis('off') | |
return fig | |
# Function to create a download link for the README file | |
def get_binary_file_downloader_html(bin_file, file_label='File'): | |
with open(bin_file, 'rb') as f: | |
data = f.read() | |
bin_str = base64.b64encode(data).decode() | |
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">Download {file_label}</a>' | |
return href | |
# Streamlit app | |
st.title("ASL Recognition App") | |
# Add README button | |
readme_col1, readme_col2 = st.columns([1, 3]) | |
with readme_col1: | |
st.markdown("## How it works") | |
with readme_col2: | |
st.markdown(get_binary_file_downloader_html('readme.md', 'README'), unsafe_allow_html=True) | |
# Create tabs for different functionalities | |
tab1, tab2 = st.tabs(["Predict ASL Sign", "View Hand Landmarks"]) | |
with tab1: | |
st.header("Predict ASL Sign") | |
uploaded_file = st.file_uploader("Upload an image of an ASL sign", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
try: | |
image = cv2.imdecode(np.frombuffer(uploaded_file.read(), np.uint8), 1) | |
if image is not None: | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
probabilities, landmarks = process_and_predict(image) | |
if probabilities is not None and landmarks is not None: | |
st.subheader("Top 5 Predictions:") | |
top_indices = np.argsort(probabilities)[::-1][:5] | |
for i in top_indices: | |
st.write(f"{model.classes_[i]}: {probabilities[i]:.2f}") | |
fig = plot_hand_landmarks(landmarks, "Detected Hand Landmarks") | |
st.pyplot(fig) | |
else: | |
st.write("No hand detected in the image.") | |
else: | |
st.error("Failed to load the image. The file might be corrupted.") | |
except Exception as e: | |
st.error(f"An error occurred while processing the image: {str(e)}") | |
with tab2: | |
st.header("View Hand Landmarks") | |
all_alphabets = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' | |
excluded_alphabets = 'DMNPTUVXZ' | |
available_alphabets = ''.join(set(all_alphabets) - set(excluded_alphabets)) | |
selected_alphabets = st.multiselect("Select alphabets to view landmarks:", list(available_alphabets)) | |
if selected_alphabets: | |
cols = st.columns(min(3, len(selected_alphabets))) | |
for idx, alphabet in enumerate(selected_alphabets): | |
with cols[idx % 3]: | |
image_path = os.path.join('asl test set', f'{alphabet.lower()}.jpeg') | |
st.write(f"Attempting to load: {image_path}") | |
if os.path.exists(image_path): | |
try: | |
image = cv2.imread(image_path) | |
if image is not None: | |
probabilities, landmarks = process_and_predict(image) | |
if landmarks is not None: | |
fig = plot_hand_landmarks(landmarks, f"Hand Landmarks for {alphabet}") | |
st.pyplot(fig) | |
else: | |
st.error(f"No hand detected for {alphabet}") | |
else: | |
st.error(f"Failed to load image for {alphabet}. The file might be corrupted.") | |
except Exception as e: | |
st.error(f"An error occurred while processing image for {alphabet}: {str(e)}") | |
else: | |
st.error(f"Image not found for {alphabet}") |