CarAssistanceQA / src /utils /performance.py
Nihal2000's picture
Update src/utils/performance.py
672ea87 verified
import time
import psutil
import threading
import os
from dataclasses import dataclass
from typing import Dict, Any, List
from src.utils.logger import get_logger
logger = get_logger(__name__)
@dataclass
class PerformanceMetrics:
start_time: float
end_time: float
duration: float
cpu_usage: List[float]
memory_usage: List[float]
peak_memory: float
operation_name: str
class PerformanceMonitor:
def __init__(self, operation_name: str):
self.operation_name = operation_name
self.start_time = None
self.end_time = None
self.cpu_usage = []
self.memory_usage = []
self.monitoring = False
self.monitor_thread = None
# Get current process for accurate memory tracking
self.process = psutil.Process(os.getpid())
self.baseline_memory = self.process.memory_info().rss / 1024 / 1024 # MB
def __enter__(self):
"""Context manager entry - start monitoring"""
self.start_monitoring()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
"""Context manager exit - stop monitoring"""
return self.stop_monitoring()
def start_monitoring(self):
"""Start monitoring system resources"""
self.start_time = time.time()
self.monitoring = True
self.cpu_usage = []
self.memory_usage = []
# Start monitoring thread
self.monitor_thread = threading.Thread(target=self._monitor_resources)
self.monitor_thread.daemon = True
self.monitor_thread.start()
logger.info(f"Started monitoring: {self.operation_name}")
def stop_monitoring(self):
"""Stop resource monitoring and return metrics"""
self.end_time = time.time()
self.monitoring = False
if self.monitor_thread:
self.monitor_thread.join()
# Calculate memory increase from baseline
if self.memory_usage:
current_memory = self.process.memory_info().rss / 1024 / 1024
memory_increase = max(self.memory_usage) - self.baseline_memory
peak_memory = max(memory_increase, 0) # Ensure non-negative
else:
peak_memory = 0
metrics = PerformanceMetrics(
start_time=self.start_time,
end_time=self.end_time,
duration=self.end_time - self.start_time,
cpu_usage=self.cpu_usage,
memory_usage=self.memory_usage,
peak_memory=peak_memory, # Memory increase from baseline
operation_name=self.operation_name
)
self._log_metrics(metrics)
return metrics
def _monitor_resources(self):
"""Monitor CPU and memory usage in background"""
while self.monitoring:
try:
# Get process-specific CPU usage
cpu_percent = self.process.cpu_percent()
# Get process-specific memory usage (RSS - Resident Set Size)
memory_info = self.process.memory_info()
memory_mb = memory_info.rss / 1024 / 1024 # Convert to MB
self.cpu_usage.append(cpu_percent)
self.memory_usage.append(memory_mb)
time.sleep(0.1) # Monitor every 0.1 seconds for more precision
except Exception as e:
logger.error(f"Error monitoring resources: {str(e)}")
break
def _log_metrics(self, metrics: PerformanceMetrics):
"""Log performance metrics"""
logger.info(f"Performance Report for: {metrics.operation_name}")
logger.info(f" Duration: {metrics.duration:.2f} seconds")
logger.info(f" Peak Memory: {metrics.peak_memory:.2f} MB")
if metrics.cpu_usage:
avg_cpu = sum(metrics.cpu_usage) / len(metrics.cpu_usage)
logger.info(f" Average CPU: {avg_cpu:.1f}%")
def get_current_memory_usage(self):
"""Get current process memory usage in MB"""
return self.process.memory_info().rss / 1024 / 1024
def get_system_info():
"""Get system information for performance context"""
process = psutil.Process()
return {
"cpu_count": psutil.cpu_count(),
"memory_total_gb": psutil.virtual_memory().total / 1024 / 1024 / 1024,
"process_memory_mb": process.memory_info().rss / 1024 / 1024
}