Spaces:
Sleeping
Sleeping
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import torch | |
| model_id = "google/gemma-3-270m" | |
| # Load tokenizer & model | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| torch_dtype=torch.float32, | |
| device_map="cpu" | |
| ) | |
| # Run inference | |
| prompt = "Explain quantum computing in simple terms." | |
| inputs = tokenizer(prompt, return_tensors="pt").to("cpu") | |
| outputs = model.generate(**inputs, max_new_tokens=50) | |
| print(tokenizer.decode(outputs[0], skip_special_tokens=True)) | |