Spaces:
Running
on
Zero
Running
on
Zero
update for video depth
Browse files- app.py +100 -39
- files/videos/00.mp4 +3 -0
- files/videos/01.mp4 +3 -0
- infer.py +69 -79
- pipeline.py +1 -1
- utils/image_utils.py +5 -2
app.py
CHANGED
|
@@ -31,18 +31,19 @@ def infer(path_input, seed):
|
|
| 31 |
return [path_input, g_save_path], [path_input, d_save_path]
|
| 32 |
|
| 33 |
def infer_video(path_input, seed):
|
| 34 |
-
frames_g, frames_d = lotus_video(path_input, 'depth', seed, device)
|
| 35 |
if not os.path.exists("files/output"):
|
| 36 |
os.makedirs("files/output")
|
| 37 |
name_base, _ = os.path.splitext(os.path.basename(path_input))
|
| 38 |
g_save_path = os.path.join("files/output", f"{name_base}_g.mp4")
|
| 39 |
d_save_path = os.path.join("files/output", f"{name_base}_d.mp4")
|
| 40 |
-
imageio.mimsave(g_save_path, frames_g)
|
| 41 |
-
imageio.mimsave(d_save_path, frames_d)
|
| 42 |
return [g_save_path, d_save_path]
|
| 43 |
|
| 44 |
def run_demo_server():
|
| 45 |
infer_gpu = spaces.GPU(functools.partial(infer))
|
|
|
|
| 46 |
gradio_theme = gr.themes.Default()
|
| 47 |
|
| 48 |
with gr.Blocks(
|
|
@@ -113,49 +114,96 @@ def run_demo_server():
|
|
| 113 |
"""
|
| 114 |
)
|
| 115 |
with gr.Tabs(elem_classes=["tabs"]):
|
| 116 |
-
with gr.
|
| 117 |
-
with gr.
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
with gr.Row():
|
| 128 |
-
image_submit_btn = gr.Button(
|
| 129 |
-
value="Predict Depth!", variant="primary"
|
| 130 |
)
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
)
|
| 140 |
-
with gr.Row():
|
| 141 |
-
image_output_d = ImageSlider(
|
| 142 |
-
label="Output (Discriminative)",
|
| 143 |
type="filepath",
|
| 144 |
interactive=False,
|
| 145 |
elem_classes="slider",
|
| 146 |
position=0.25,
|
| 147 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
|
| 160 |
### Image
|
| 161 |
image_submit_btn.click(
|
|
@@ -175,6 +223,19 @@ def run_demo_server():
|
|
| 175 |
queue=False,
|
| 176 |
)
|
| 177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
### Server launch
|
| 179 |
demo.queue(
|
| 180 |
api_open=False,
|
|
|
|
| 31 |
return [path_input, g_save_path], [path_input, d_save_path]
|
| 32 |
|
| 33 |
def infer_video(path_input, seed):
|
| 34 |
+
frames_g, frames_d, fps = lotus_video(path_input, 'depth', seed, device)
|
| 35 |
if not os.path.exists("files/output"):
|
| 36 |
os.makedirs("files/output")
|
| 37 |
name_base, _ = os.path.splitext(os.path.basename(path_input))
|
| 38 |
g_save_path = os.path.join("files/output", f"{name_base}_g.mp4")
|
| 39 |
d_save_path = os.path.join("files/output", f"{name_base}_d.mp4")
|
| 40 |
+
imageio.mimsave(g_save_path, frames_g, fps=fps)
|
| 41 |
+
imageio.mimsave(d_save_path, frames_d, fps=fps)
|
| 42 |
return [g_save_path, d_save_path]
|
| 43 |
|
| 44 |
def run_demo_server():
|
| 45 |
infer_gpu = spaces.GPU(functools.partial(infer))
|
| 46 |
+
infer_video_gpu = spaces.GPU(functools.partial(infer_video))
|
| 47 |
gradio_theme = gr.themes.Default()
|
| 48 |
|
| 49 |
with gr.Blocks(
|
|
|
|
| 114 |
"""
|
| 115 |
)
|
| 116 |
with gr.Tabs(elem_classes=["tabs"]):
|
| 117 |
+
with gr.Tab("IMAGE"):
|
| 118 |
+
with gr.Row():
|
| 119 |
+
with gr.Column():
|
| 120 |
+
image_input = gr.Image(
|
| 121 |
+
label="Input Image",
|
| 122 |
+
type="filepath",
|
| 123 |
+
)
|
| 124 |
+
seed = gr.Number(
|
| 125 |
+
label="Seed (only for Generative mode)",
|
| 126 |
+
minimum=0,
|
| 127 |
+
maximum=999999999,
|
|
|
|
|
|
|
|
|
|
| 128 |
)
|
| 129 |
+
with gr.Row():
|
| 130 |
+
image_submit_btn = gr.Button(
|
| 131 |
+
value="Predict Depth!", variant="primary"
|
| 132 |
+
)
|
| 133 |
+
image_reset_btn = gr.Button(value="Reset")
|
| 134 |
+
with gr.Column():
|
| 135 |
+
image_output_g = ImageSlider(
|
| 136 |
+
label="Output (Generative)",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
type="filepath",
|
| 138 |
interactive=False,
|
| 139 |
elem_classes="slider",
|
| 140 |
position=0.25,
|
| 141 |
)
|
| 142 |
+
with gr.Row():
|
| 143 |
+
image_output_d = ImageSlider(
|
| 144 |
+
label="Output (Discriminative)",
|
| 145 |
+
type="filepath",
|
| 146 |
+
interactive=False,
|
| 147 |
+
elem_classes="slider",
|
| 148 |
+
position=0.25,
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
gr.Examples(
|
| 152 |
+
fn=infer_gpu,
|
| 153 |
+
examples=sorted([
|
| 154 |
+
[os.path.join("files", "images", name), 0]
|
| 155 |
+
for name in os.listdir(os.path.join("files", "images"))
|
| 156 |
+
]),
|
| 157 |
+
inputs=[image_input, seed],
|
| 158 |
+
outputs=[image_output_g, image_output_d],
|
| 159 |
+
cache_examples=False,
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
with gr.Tab("VIDEO"):
|
| 163 |
+
with gr.Row():
|
| 164 |
+
with gr.Column():
|
| 165 |
+
input_video = gr.Video(
|
| 166 |
+
label="Input Video",
|
| 167 |
+
autoplay=True,
|
| 168 |
+
loop=True,
|
| 169 |
+
)
|
| 170 |
+
seed = gr.Number(
|
| 171 |
+
label="Seed (only for Generative mode)",
|
| 172 |
+
minimum=0,
|
| 173 |
+
maximum=999999999,
|
| 174 |
+
)
|
| 175 |
+
with gr.Row():
|
| 176 |
+
video_submit_btn = gr.Button(
|
| 177 |
+
value="Predict Depth!", variant="primary"
|
| 178 |
+
)
|
| 179 |
+
video_reset_btn = gr.Button(value="Reset")
|
| 180 |
+
with gr.Column():
|
| 181 |
+
video_output_g = gr.Video(
|
| 182 |
+
label="Output (Generative)",
|
| 183 |
+
interactive=False,
|
| 184 |
+
autoplay=True,
|
| 185 |
+
loop=True,
|
| 186 |
+
show_share_button=True,
|
| 187 |
+
)
|
| 188 |
+
with gr.Row():
|
| 189 |
+
video_output_d = gr.Video(
|
| 190 |
+
label="Output (Discriminative)",
|
| 191 |
+
interactive=False,
|
| 192 |
+
autoplay=True,
|
| 193 |
+
loop=True,
|
| 194 |
+
show_share_button=True,
|
| 195 |
+
)
|
| 196 |
|
| 197 |
+
gr.Examples(
|
| 198 |
+
fn=infer_video_gpu,
|
| 199 |
+
examples=sorted([
|
| 200 |
+
[os.path.join("files", "videos", name), 0]
|
| 201 |
+
for name in os.listdir(os.path.join("files", "videos"))
|
| 202 |
+
]),
|
| 203 |
+
inputs=[input_video, seed],
|
| 204 |
+
outputs=[video_output_g, video_output_d],
|
| 205 |
+
cache_examples=False,
|
| 206 |
+
)
|
| 207 |
|
| 208 |
### Image
|
| 209 |
image_submit_btn.click(
|
|
|
|
| 223 |
queue=False,
|
| 224 |
)
|
| 225 |
|
| 226 |
+
### Video
|
| 227 |
+
video_submit_btn.click(
|
| 228 |
+
fn=infer_video_gpu,
|
| 229 |
+
inputs=[input_video, seed],
|
| 230 |
+
outputs=[video_output_g, video_output_d],
|
| 231 |
+
queue=True,
|
| 232 |
+
)
|
| 233 |
+
video_reset_btn.click(
|
| 234 |
+
fn=lambda: (None, None, None),
|
| 235 |
+
inputs=[],
|
| 236 |
+
outputs=[video_output_g, video_output_d],
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
### Server launch
|
| 240 |
demo.queue(
|
| 241 |
api_open=False,
|
files/videos/00.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ddb5e80168634ef46cdd5bb45178573a34001f147c7e96eb6220c09bfc0c4649
|
| 3 |
+
size 3774878
|
files/videos/01.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9a532ba2738716dbb244e0d7172cf681879218cbbdad09980404fa08ef6b9ecc
|
| 3 |
+
size 3095352
|
infer.py
CHANGED
|
@@ -19,7 +19,7 @@ import cv2
|
|
| 19 |
|
| 20 |
check_min_version('0.28.0.dev0')
|
| 21 |
|
| 22 |
-
def infer_pipe(pipe,
|
| 23 |
if seed is None:
|
| 24 |
generator = None
|
| 25 |
else:
|
|
@@ -31,7 +31,8 @@ def infer_pipe(pipe, image_input, task_name, seed, device):
|
|
| 31 |
autocast_ctx = torch.autocast(pipe.device.type)
|
| 32 |
with autocast_ctx:
|
| 33 |
|
| 34 |
-
|
|
|
|
| 35 |
test_image = np.array(test_image).astype(np.float16)
|
| 36 |
test_image = torch.tensor(test_image).permute(2,0,1).unsqueeze(0)
|
| 37 |
test_image = test_image / 127.5 - 1.0
|
|
@@ -55,17 +56,57 @@ def infer_pipe(pipe, image_input, task_name, seed, device):
|
|
| 55 |
# Post-process the prediction
|
| 56 |
if task_name == 'depth':
|
| 57 |
output_npy = pred.mean(axis=-1)
|
| 58 |
-
output_color = colorize_depth_map(output_npy)
|
| 59 |
else:
|
| 60 |
output_npy = pred
|
| 61 |
output_color = Image.fromarray((output_npy * 255).astype(np.uint8))
|
| 62 |
|
| 63 |
return output_color
|
| 64 |
|
| 65 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
if task_name == 'depth':
|
| 67 |
-
model_g = 'jingheya/lotus-depth-g-
|
| 68 |
-
model_d = 'jingheya/lotus-depth-d-
|
| 69 |
else:
|
| 70 |
model_g = 'jingheya/lotus-normal-g-v1-0'
|
| 71 |
model_d = 'jingheya/lotus-normal-d-v1-0'
|
|
@@ -84,9 +125,17 @@ def lotus_video(input_video, task_name, seed, device):
|
|
| 84 |
pipe_g.set_progress_bar_config(disable=True)
|
| 85 |
pipe_d.set_progress_bar_config(disable=True)
|
| 86 |
logging.info(f"Successfully loading pipeline from {model_g} and {model_d}.")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
# load the video and split it into frames
|
| 89 |
cap = cv2.VideoCapture(input_video)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
frames = []
|
| 91 |
while True:
|
| 92 |
ret, frame = cap.read()
|
|
@@ -94,91 +143,32 @@ def lotus_video(input_video, task_name, seed, device):
|
|
| 94 |
break
|
| 95 |
frames.append(frame)
|
| 96 |
cap.release()
|
| 97 |
-
logging.info(f"There are {len(frames)} frames in the video.")
|
| 98 |
|
|
|
|
| 99 |
if seed is None:
|
| 100 |
generator = None
|
| 101 |
else:
|
| 102 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
|
|
|
| 106 |
|
| 107 |
output_g = []
|
| 108 |
output_d = []
|
| 109 |
for frame in frames:
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
test_image = torch.tensor(test_image).permute(2,0,1).unsqueeze(0)
|
| 118 |
-
test_image = test_image / 127.5 - 1.0
|
| 119 |
-
test_image = test_image.to(device)
|
| 120 |
|
| 121 |
-
|
| 122 |
-
pred_g = pipe_g(
|
| 123 |
-
rgb_in=test_image,
|
| 124 |
-
prompt='',
|
| 125 |
-
num_inference_steps=1,
|
| 126 |
-
generator=generator,
|
| 127 |
-
# guidance_scale=0,
|
| 128 |
-
output_type='np',
|
| 129 |
-
timesteps=[999],
|
| 130 |
-
task_emb=task_emb,
|
| 131 |
-
).images[0]
|
| 132 |
-
pred_d = pipe_d(
|
| 133 |
-
rgb_in=test_image,
|
| 134 |
-
prompt='',
|
| 135 |
-
num_inference_steps=1,
|
| 136 |
-
generator=generator,
|
| 137 |
-
# guidance_scale=0,
|
| 138 |
-
output_type='np',
|
| 139 |
-
timesteps=[999],
|
| 140 |
-
task_emb=task_emb,
|
| 141 |
-
).images[0]
|
| 142 |
-
|
| 143 |
-
# Post-process the prediction
|
| 144 |
-
if task_name == 'depth':
|
| 145 |
-
output_npy_g = pred_g.mean(axis=-1)
|
| 146 |
-
output_color_g = colorize_depth_map(output_npy_g)
|
| 147 |
-
output_npy_d = pred_d.mean(axis=-1)
|
| 148 |
-
output_color_d = colorize_depth_map(output_npy_d)
|
| 149 |
-
else:
|
| 150 |
-
output_npy_g = pred_g
|
| 151 |
-
output_color_g = Image.fromarray((output_npy_g * 255).astype(np.uint8))
|
| 152 |
-
output_npy_d = pred_d
|
| 153 |
-
output_color_d = Image.fromarray((output_npy_d * 255).astype(np.uint8))
|
| 154 |
-
|
| 155 |
-
output_g.append(output_color_g)
|
| 156 |
-
output_d.append(output_color_d)
|
| 157 |
-
|
| 158 |
-
return output_g, output_d
|
| 159 |
|
| 160 |
def lotus(image_input, task_name, seed, device):
|
| 161 |
-
|
| 162 |
-
model_g = 'jingheya/lotus-depth-g-v1-0'
|
| 163 |
-
model_d = 'jingheya/lotus-depth-d-v1-1'
|
| 164 |
-
else:
|
| 165 |
-
model_g = 'jingheya/lotus-normal-g-v1-0'
|
| 166 |
-
model_d = 'jingheya/lotus-normal-d-v1-0'
|
| 167 |
-
|
| 168 |
-
dtype = torch.float16
|
| 169 |
-
pipe_g = LotusGPipeline.from_pretrained(
|
| 170 |
-
model_g,
|
| 171 |
-
torch_dtype=dtype,
|
| 172 |
-
)
|
| 173 |
-
pipe_d = LotusDPipeline.from_pretrained(
|
| 174 |
-
model_d,
|
| 175 |
-
torch_dtype=dtype,
|
| 176 |
-
)
|
| 177 |
-
pipe_g.to(device)
|
| 178 |
-
pipe_d.to(device)
|
| 179 |
-
pipe_g.set_progress_bar_config(disable=True)
|
| 180 |
-
pipe_d.set_progress_bar_config(disable=True)
|
| 181 |
-
logging.info(f"Successfully loading pipeline from {model_g} and {model_d}.")
|
| 182 |
output_g = infer_pipe(pipe_g, image_input, task_name, seed, device)
|
| 183 |
output_d = infer_pipe(pipe_d, image_input, task_name, seed, device)
|
| 184 |
return output_g, output_d
|
|
|
|
| 19 |
|
| 20 |
check_min_version('0.28.0.dev0')
|
| 21 |
|
| 22 |
+
def infer_pipe(pipe, test_image, task_name, seed, device, video_depth=False):
|
| 23 |
if seed is None:
|
| 24 |
generator = None
|
| 25 |
else:
|
|
|
|
| 31 |
autocast_ctx = torch.autocast(pipe.device.type)
|
| 32 |
with autocast_ctx:
|
| 33 |
|
| 34 |
+
if video_depth == False:
|
| 35 |
+
test_image = Image.open(test_image).convert('RGB')
|
| 36 |
test_image = np.array(test_image).astype(np.float16)
|
| 37 |
test_image = torch.tensor(test_image).permute(2,0,1).unsqueeze(0)
|
| 38 |
test_image = test_image / 127.5 - 1.0
|
|
|
|
| 56 |
# Post-process the prediction
|
| 57 |
if task_name == 'depth':
|
| 58 |
output_npy = pred.mean(axis=-1)
|
| 59 |
+
output_color = colorize_depth_map(output_npy, reverse_color=True)
|
| 60 |
else:
|
| 61 |
output_npy = pred
|
| 62 |
output_color = Image.fromarray((output_npy * 255).astype(np.uint8))
|
| 63 |
|
| 64 |
return output_color
|
| 65 |
|
| 66 |
+
def infer_pipe_video(pipe, test_image, task_name, generator, device, latents=None):
|
| 67 |
+
if torch.backends.mps.is_available():
|
| 68 |
+
autocast_ctx = nullcontext()
|
| 69 |
+
else:
|
| 70 |
+
autocast_ctx = torch.autocast(pipe.device.type)
|
| 71 |
+
with autocast_ctx:
|
| 72 |
+
test_image = np.array(test_image).astype(np.float16)
|
| 73 |
+
test_image = torch.tensor(test_image).permute(2,0,1).unsqueeze(0)
|
| 74 |
+
test_image = test_image / 127.5 - 1.0
|
| 75 |
+
test_image = test_image.to(device)
|
| 76 |
+
|
| 77 |
+
task_emb = torch.tensor([1, 0]).float().unsqueeze(0).repeat(1, 1).to(device)
|
| 78 |
+
task_emb = torch.cat([torch.sin(task_emb), torch.cos(task_emb)], dim=-1).repeat(1, 1)
|
| 79 |
+
|
| 80 |
+
# Run
|
| 81 |
+
output = pipe(
|
| 82 |
+
rgb_in=test_image,
|
| 83 |
+
prompt='',
|
| 84 |
+
num_inference_steps=1,
|
| 85 |
+
generator=generator,
|
| 86 |
+
latents=latents,
|
| 87 |
+
# guidance_scale=0,
|
| 88 |
+
output_type='np',
|
| 89 |
+
timesteps=[999],
|
| 90 |
+
task_emb=task_emb,
|
| 91 |
+
return_dict=False
|
| 92 |
+
)
|
| 93 |
+
pred = output[0][0]
|
| 94 |
+
last_frame_latent = output[2]
|
| 95 |
+
|
| 96 |
+
# Post-process the prediction
|
| 97 |
+
if task_name == 'depth':
|
| 98 |
+
output_npy = pred.mean(axis=-1)
|
| 99 |
+
output_color = colorize_depth_map(output_npy, reverse_color=True)
|
| 100 |
+
else:
|
| 101 |
+
output_npy = pred
|
| 102 |
+
output_color = Image.fromarray((output_npy * 255).astype(np.uint8))
|
| 103 |
+
|
| 104 |
+
return output_color, last_frame_latent
|
| 105 |
+
|
| 106 |
+
def load_pipe(task_name, device):
|
| 107 |
if task_name == 'depth':
|
| 108 |
+
model_g = 'jingheya/lotus-depth-g-v2-0-disparity'
|
| 109 |
+
model_d = 'jingheya/lotus-depth-d-v2-0-disparity'
|
| 110 |
else:
|
| 111 |
model_g = 'jingheya/lotus-normal-g-v1-0'
|
| 112 |
model_d = 'jingheya/lotus-normal-d-v1-0'
|
|
|
|
| 125 |
pipe_g.set_progress_bar_config(disable=True)
|
| 126 |
pipe_d.set_progress_bar_config(disable=True)
|
| 127 |
logging.info(f"Successfully loading pipeline from {model_g} and {model_d}.")
|
| 128 |
+
return pipe_g, pipe_d
|
| 129 |
+
|
| 130 |
+
def lotus_video(input_video, task_name, seed, device):
|
| 131 |
+
pipe_g, pipe_d = load_pipe(task_name, device)
|
| 132 |
|
| 133 |
# load the video and split it into frames
|
| 134 |
cap = cv2.VideoCapture(input_video)
|
| 135 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 136 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 137 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 138 |
+
|
| 139 |
frames = []
|
| 140 |
while True:
|
| 141 |
ret, frame = cap.read()
|
|
|
|
| 143 |
break
|
| 144 |
frames.append(frame)
|
| 145 |
cap.release()
|
|
|
|
| 146 |
|
| 147 |
+
# generate latents_common for lotus-g
|
| 148 |
if seed is None:
|
| 149 |
generator = None
|
| 150 |
else:
|
| 151 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 152 |
+
last_frame_latent = None
|
| 153 |
+
latent_common = torch.randn(
|
| 154 |
+
(1, 4, height // pipe_g.vae_scale_factor, width // pipe_g.vae_scale_factor), generator=generator, dtype=pipe_g.dtype, device=device
|
| 155 |
+
)
|
| 156 |
|
| 157 |
output_g = []
|
| 158 |
output_d = []
|
| 159 |
for frame in frames:
|
| 160 |
+
latents = latent_common
|
| 161 |
+
if last_frame_latent is not None:
|
| 162 |
+
latents = 0.9 * latents + 0.1 * last_frame_latent
|
| 163 |
+
output_frame_g, last_frame_latent = infer_pipe_video(pipe_g, frame, task_name, seed, device, latents)
|
| 164 |
+
output_frame_d = infer_pipe(pipe_d, frame, task_name, seed, device, video_depth=True)
|
| 165 |
+
output_g.append(output_frame_g)
|
| 166 |
+
output_d.append(output_frame_d)
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
+
return output_g, output_d, fps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
def lotus(image_input, task_name, seed, device):
|
| 171 |
+
pipe_g, pipe_d = load_pipe(task_name, device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
output_g = infer_pipe(pipe_g, image_input, task_name, seed, device)
|
| 173 |
output_d = infer_pipe(pipe_d, image_input, task_name, seed, device)
|
| 174 |
return output_g, output_d
|
pipeline.py
CHANGED
|
@@ -1279,6 +1279,6 @@ class LotusGPipeline(DirectDiffusionPipeline):
|
|
| 1279 |
self.maybe_free_model_hooks()
|
| 1280 |
|
| 1281 |
if not return_dict:
|
| 1282 |
-
return (image, has_nsfw_concept)
|
| 1283 |
|
| 1284 |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
|
|
|
| 1279 |
self.maybe_free_model_hooks()
|
| 1280 |
|
| 1281 |
if not return_dict:
|
| 1282 |
+
return (image, has_nsfw_concept, latents)
|
| 1283 |
|
| 1284 |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
utils/image_utils.py
CHANGED
|
@@ -44,12 +44,15 @@ def concatenate_images(*image_lists):
|
|
| 44 |
return new_image
|
| 45 |
|
| 46 |
|
| 47 |
-
def colorize_depth_map(depth, mask=None):
|
| 48 |
cm = matplotlib.colormaps["Spectral"]
|
| 49 |
# normalize
|
| 50 |
depth = ((depth - depth.min()) / (depth.max() - depth.min()))
|
| 51 |
# colorize
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
| 53 |
depth_colored = (img_colored_np * 255).astype(np.uint8)
|
| 54 |
if mask is not None:
|
| 55 |
masked_image = np.zeros_like(depth_colored)
|
|
|
|
| 44 |
return new_image
|
| 45 |
|
| 46 |
|
| 47 |
+
def colorize_depth_map(depth, mask=None, reverse_color=False):
|
| 48 |
cm = matplotlib.colormaps["Spectral"]
|
| 49 |
# normalize
|
| 50 |
depth = ((depth - depth.min()) / (depth.max() - depth.min()))
|
| 51 |
# colorize
|
| 52 |
+
if reverse_color:
|
| 53 |
+
img_colored_np = cm(1 - depth, bytes=False)[:, :, 0:3] # Invert the depth values before applying colormap
|
| 54 |
+
else:
|
| 55 |
+
img_colored_np = cm(depth, bytes=False)[:, :, 0:3] # (h,w,3)
|
| 56 |
depth_colored = (img_colored_np * 255).astype(np.uint8)
|
| 57 |
if mask is not None:
|
| 58 |
masked_image = np.zeros_like(depth_colored)
|