Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow.keras.preprocessing.text import Tokenizer | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
import json | |
# Load configurations | |
NUM_WORDS = 1000 | |
MAXLEN = 120 | |
PADDING = 'post' | |
OOV_TOKEN = "<OOV>" | |
with open('tokenizer.json', 'r') as f: | |
tokenizer = tf.keras.preprocessing.text.tokenizer_from_json(f.read()) | |
# Load the trained model | |
model = tf.keras.models.load_model("model.h5") | |
# Function to convert sentences to padded sequences | |
def seq_and_pad(sentences, tokenizer, padding, maxlen): | |
sequences = tokenizer.texts_to_sequences(sentences) | |
padded_sequences = pad_sequences(sequences, maxlen=maxlen, padding=padding) | |
return padded_sequences | |
# Function to predict the class of a sentence | |
def predict_sport_class(sentence): | |
# Convert the sentence to a padded sequence | |
sentence_seq = seq_and_pad([sentence], tokenizer, PADDING, MAXLEN) | |
# Make a prediction | |
prediction = model.predict(sentence_seq) | |
# Get the predicted label | |
predicted_label = np.argmax(prediction) | |
# Mapping the label value back to the original label | |
label_mapping = {0: "sport", 1: "business", 2: "politics", 3: "tech", 4: "entertainment"} | |
# Get the predicted class label | |
predicted_class = label_mapping[predicted_label] | |
return predicted_class | |
# Define examples | |
examples = [ | |
["The team won the championship in a thrilling match!"], | |
["The stock market saw a significant drop today."], | |
["The prime minister announced new economic reforms."], | |
["The latest smartphone has cutting-edge features."], | |
["The actor delivered a stellar performance in the new movie."], | |
] | |
# Custom CSS for a fascinating dark theme | |
custom_css = """ | |
body { | |
background: linear-gradient(135deg, #1a1a2e, #16213e, #0f3460); /* Dark blue gradient */ | |
color: #ff3e3e; /* Vibrant red text color */ | |
font-family: 'Arial', sans-serif; | |
} | |
h1, h2, p { | |
color: #ff3e3e; /* Red for headings and descriptions */ | |
text-shadow: 2px 2px 4px #000000; /* Text shadow for a glowing effect */ | |
} | |
input[type="text"] { | |
background-color: #16213e; /* Dark input background */ | |
color: #ffffff; /* White text in input fields */ | |
border: 2px solid #0f3460; /* Blue border */ | |
border-radius: 8px; | |
} | |
button { | |
background: linear-gradient(45deg, #ff3e3e, #0f3460); /* Gradient button */ | |
color: #ffffff; | |
border: none; | |
border-radius: 8px; | |
padding: 10px 20px; | |
font-size: 16px; | |
cursor: pointer; | |
box-shadow: 2px 2px 10px rgba(0, 0, 0, 0.5); | |
transition: transform 0.2s; | |
} | |
button:hover { | |
transform: scale(1.05); /* Slight zoom effect on hover */ | |
box-shadow: 2px 2px 15px rgba(255, 62, 62, 0.8); | |
} | |
.gradio-container { | |
border-radius: 15px; | |
padding: 20px; | |
background: rgba(0, 0, 0, 0.7); /* Transparent black background for the main container */ | |
box-shadow: 0px 0px 15px #0f3460; /* Glowing effect for the container */ | |
} | |
""" | |
# Interface definition | |
interface = gr.Interface( | |
fn=predict_sport_class, | |
inputs=gr.Textbox(lines=2, placeholder="Enter Article here..."), | |
outputs=gr.Label(num_top_classes=1), | |
title="Topic Classification App", | |
description="Classify topics into one of these categories: sport, business, politics, tech, entertainment.", | |
examples=examples, | |
css=custom_css, # Apply custom CSS | |
) | |
# Launch the interface | |
interface.launch() | |