Spaces:
Sleeping
Sleeping
NightPrince
commited on
Commit
•
d3a1a00
1
Parent(s):
914644d
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Initialize global variables
|
9 |
+
model = None
|
10 |
+
tokenizer = None
|
11 |
+
max_len_seq = None
|
12 |
+
|
13 |
+
def load_model_artifacts():
|
14 |
+
global model, tokenizer, max_len_seq
|
15 |
+
|
16 |
+
# Load model directly from root directory
|
17 |
+
model = tf.keras.models.load_model('shakespeare_model.h5')
|
18 |
+
|
19 |
+
# Load tokenizer from root
|
20 |
+
with open('tokenizer.json', 'r') as f:
|
21 |
+
tokenizer = tf.keras.preprocessing.text.tokenizer_from_json(f.read())
|
22 |
+
|
23 |
+
# Load config from root
|
24 |
+
with open('config.json', 'r') as f:
|
25 |
+
config = json.load(f)
|
26 |
+
max_len_seq = config['max_len_seq']
|
27 |
+
|
28 |
+
def generate_shakespeare_quote(seed_text, num_words):
|
29 |
+
"""Generate Shakespeare-style text from a seed text"""
|
30 |
+
if model is None:
|
31 |
+
load_model_artifacts()
|
32 |
+
|
33 |
+
try:
|
34 |
+
for _ in range(int(num_words)):
|
35 |
+
# Convert the seed text to sequences
|
36 |
+
token_list = tokenizer.texts_to_sequences([seed_text])[0]
|
37 |
+
# Pad the sequences
|
38 |
+
token_list = pad_sequences([token_list], maxlen=max_len_seq-1, padding='pre')
|
39 |
+
# Predict the next word
|
40 |
+
predicted = model.predict(token_list, verbose=0)
|
41 |
+
# Get the word with highest probability
|
42 |
+
predicted_word = tokenizer.index_word[np.argmax(predicted, axis=-1).item()]
|
43 |
+
# Add the predicted word to the seed text
|
44 |
+
seed_text += " " + predicted_word
|
45 |
+
|
46 |
+
return seed_text
|
47 |
+
except Exception as e:
|
48 |
+
return f"Error generating text: {str(e)}"
|
49 |
+
|
50 |
+
# Create the Gradio interface
|
51 |
+
iface = gr.Interface(
|
52 |
+
fn=generate_shakespeare_quote,
|
53 |
+
inputs=[
|
54 |
+
gr.Textbox(
|
55 |
+
label="Enter your seed text",
|
56 |
+
placeholder="Start your quote here...",
|
57 |
+
value="to be or"
|
58 |
+
),
|
59 |
+
gr.Slider(
|
60 |
+
minimum=1,
|
61 |
+
maximum=50,
|
62 |
+
value=10,
|
63 |
+
step=1,
|
64 |
+
label="Number of words to generate"
|
65 |
+
)
|
66 |
+
],
|
67 |
+
outputs=gr.Textbox(label="Generated Quote"),
|
68 |
+
title="Shakespeare Quote Generator",
|
69 |
+
description="""Generate Shakespeare-style quotes using AI!
|
70 |
+
Enter a seed text and choose how many words you want to generate.
|
71 |
+
The model will continue your text in Shakespeare's style.""",
|
72 |
+
examples=[
|
73 |
+
["to be or", 10],
|
74 |
+
["love is", 15],
|
75 |
+
["life is", 12],
|
76 |
+
["death be not", 10],
|
77 |
+
["shall i compare thee", 8]
|
78 |
+
],
|
79 |
+
theme=gr.themes.Base()
|
80 |
+
)
|
81 |
+
|
82 |
+
# Launch the app
|
83 |
+
if __name__ == "__main__":
|
84 |
+
iface.launch()
|