NickKolok commited on
Commit
3badfec
·
verified ·
1 Parent(s): 45efd2e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -6
app.py CHANGED
@@ -1,15 +1,43 @@
1
- import gradio as gr
2
- from deepface import DeepFace
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
  def calculate_similarity(image1, image2):
5
- # Analyze the two images for facial similarity
6
  try:
7
- result = DeepFace.verify(image1, image2, enforce_detection=True)
8
- similarity_percentage = result['distance'] * 100 # Higher distance means less similarity
9
- return 100 - similarity_percentage # Convert distance to similarity percentage
 
 
 
 
 
 
 
 
10
  except Exception as e:
11
  return str(e)
12
 
 
13
  # Create a Gradio interface
14
  iface = gr.Interface(
15
  fn=calculate_similarity,
 
1
+ import cv2
2
+ import numpy as np
3
+
4
+ def crop_face(image_path):
5
+ # Load the Haarcascade classifier for face detection
6
+ face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
7
+
8
+ # Read the image
9
+ img = cv2.imread(image_path)
10
+ gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
11
+
12
+ # Detect faces in the image
13
+ faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5)
14
+
15
+ # If a face is detected, crop it
16
+ if len(faces) > 0:
17
+ (x, y, w, h) = faces[0] # Take the first detected face
18
+ cropped_face = img[y:y+h, x:x+w]
19
+ return cropped_face
20
+ else:
21
+ raise ValueError("No face detected in the image.")
22
 
23
  def calculate_similarity(image1, image2):
24
+ # Crop faces from both images
25
  try:
26
+ face1 = crop_face(image1)
27
+ face2 = crop_face(image2)
28
+
29
+ # Convert cropped images to RGB format for DeepFace
30
+ face1 = cv2.cvtColor(face1, cv2.COLOR_BGR2RGB)
31
+ face2 = cv2.cvtColor(face2, cv2.COLOR_BGR2RGB)
32
+
33
+ # Analyze the two cropped images for facial similarity
34
+ result = DeepFace.verify(face1, face2, model_name='VGG-Face', enforce_detection=False)
35
+ similarity_percentage = (1 - result['distance']) * 100 # Convert distance to similarity percentage
36
+ return similarity_percentage
37
  except Exception as e:
38
  return str(e)
39
 
40
+
41
  # Create a Gradio interface
42
  iface = gr.Interface(
43
  fn=calculate_similarity,