Spaces:
Runtime error
Runtime error
toilaluan
commited on
Commit
β’
ed67098
1
Parent(s):
b880c46
update
Browse files- 0_β΅_GoJourney.py +203 -0
- 0_π_Home_&_Statistics.py +56 -0
- requirements.txt +8 -0
0_β΅_GoJourney.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import base64
|
3 |
+
import io
|
4 |
+
import random
|
5 |
+
import time
|
6 |
+
from typing import List
|
7 |
+
from PIL import Image
|
8 |
+
import aiohttp
|
9 |
+
import asyncio
|
10 |
+
from streamlit_image_select import image_select
|
11 |
+
import requests
|
12 |
+
import streamlit as st
|
13 |
+
import requests
|
14 |
+
import zipfile
|
15 |
+
import io
|
16 |
+
import pandas as pd
|
17 |
+
from core import *
|
18 |
+
from utils import icon
|
19 |
+
from streamlit_image_select import image_select
|
20 |
+
from PIL import Image
|
21 |
+
import random
|
22 |
+
import time
|
23 |
+
import base64
|
24 |
+
from typing import List
|
25 |
+
import aiohttp
|
26 |
+
import asyncio
|
27 |
+
import plotly.express as px
|
28 |
+
from common import set_page_container_style
|
29 |
+
|
30 |
+
replicate_text = "NicheImage - Subnet 23 - Bittensor"
|
31 |
+
replicate_logo = "assets/NicheTensorTransparent.png"
|
32 |
+
replicate_link = "https://github.com/NicheTensor/NicheImage"
|
33 |
+
|
34 |
+
st.set_page_config(
|
35 |
+
page_title="NicheImage Generator", page_icon=replicate_logo, layout="wide"
|
36 |
+
)
|
37 |
+
set_page_container_style(
|
38 |
+
max_width=1100,
|
39 |
+
max_width_100_percent=True,
|
40 |
+
padding_top=0,
|
41 |
+
padding_right=10,
|
42 |
+
padding_left=5,
|
43 |
+
padding_bottom=10,
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
def fetch_GoJourney(task_id):
|
48 |
+
endpoint = "https://api.midjourneyapi.xyz/mj/v2/fetch"
|
49 |
+
data = {"task_id": task_id}
|
50 |
+
response = requests.post(endpoint, json=data)
|
51 |
+
return response.json()
|
52 |
+
|
53 |
+
|
54 |
+
def get_or_create_eventloop():
|
55 |
+
try:
|
56 |
+
return asyncio.get_event_loop()
|
57 |
+
except RuntimeError as ex:
|
58 |
+
if "There is no current event loop in thread" in str(ex):
|
59 |
+
loop = asyncio.new_event_loop()
|
60 |
+
asyncio.set_event_loop(loop)
|
61 |
+
return asyncio.get_event_loop()
|
62 |
+
|
63 |
+
|
64 |
+
# UI configurations
|
65 |
+
st.markdown(
|
66 |
+
"""<style>
|
67 |
+
#root > div:nth-child(1) > div > div > div > div > section > div {padding-top: 2rem;}
|
68 |
+
</style>
|
69 |
+
|
70 |
+
""",
|
71 |
+
unsafe_allow_html=True,
|
72 |
+
)
|
73 |
+
css = """
|
74 |
+
<style>
|
75 |
+
section.main > div:has(~ footer ) {
|
76 |
+
padding-bottom: 5px;
|
77 |
+
}
|
78 |
+
</style>
|
79 |
+
"""
|
80 |
+
st.markdown(css, unsafe_allow_html=True)
|
81 |
+
|
82 |
+
# API Tokens and endpoints from `.streamlit/secrets.toml` file
|
83 |
+
API_TOKEN = st.secrets["API_TOKEN"]
|
84 |
+
# Placeholders for images and gallery
|
85 |
+
generated_images_placeholder = st.empty()
|
86 |
+
gallery_placeholder = st.empty()
|
87 |
+
|
88 |
+
|
89 |
+
def configure_sidebar() -> None:
|
90 |
+
"""
|
91 |
+
Setup and display the sidebar elements.
|
92 |
+
|
93 |
+
This function configures the sidebar of the Streamlit application,
|
94 |
+
including the form for user inputs and the resources section.
|
95 |
+
"""
|
96 |
+
with st.sidebar:
|
97 |
+
st.image(replicate_logo, use_column_width=True)
|
98 |
+
with st.form("my_form"):
|
99 |
+
prompt = st.text_area(
|
100 |
+
":blue[**Enter prompt βπΎ**]",
|
101 |
+
value="a beautiful flower under the sun --ar 16:9",
|
102 |
+
)
|
103 |
+
with st.expander(
|
104 |
+
"π Advanced",
|
105 |
+
expanded=False,
|
106 |
+
):
|
107 |
+
uid = st.text_input("Specify an UID", value="-1")
|
108 |
+
secret_key = st.text_input("Enter secret key", value="")
|
109 |
+
seed = st.text_input("Seed", value="-1")
|
110 |
+
# The Big Red "Submit" Button!
|
111 |
+
submitted = st.form_submit_button(
|
112 |
+
"Submit", type="primary", use_container_width=True
|
113 |
+
)
|
114 |
+
|
115 |
+
return (
|
116 |
+
submitted,
|
117 |
+
prompt,
|
118 |
+
uid,
|
119 |
+
secret_key,
|
120 |
+
seed,
|
121 |
+
)
|
122 |
+
|
123 |
+
|
124 |
+
def main_midjourney(submitted, prompt, uid, secret_key, seed):
|
125 |
+
data = {
|
126 |
+
"key": "capricorn_feb",
|
127 |
+
"prompt": prompt,
|
128 |
+
"model_name": "GoJourney",
|
129 |
+
}
|
130 |
+
print(data)
|
131 |
+
if submitted:
|
132 |
+
with st.status(
|
133 |
+
"π©πΎβπ³ Whipping up your words into art...", expanded=True
|
134 |
+
) as status:
|
135 |
+
try:
|
136 |
+
if submitted:
|
137 |
+
with generated_images_placeholder.container():
|
138 |
+
loop = get_or_create_eventloop()
|
139 |
+
asyncio.set_event_loop(loop)
|
140 |
+
output = requests.post(
|
141 |
+
"http://proxy_client_nicheimage.nichetensor.com:10003/generate", json=data
|
142 |
+
)
|
143 |
+
output = output.json()
|
144 |
+
print(output)
|
145 |
+
task_id = output["task_id"]
|
146 |
+
task_response = fetch_GoJourney(task_id)
|
147 |
+
task_status = task_response["status"]
|
148 |
+
if task_status == "failed":
|
149 |
+
status.update(label="Task failed", state="error")
|
150 |
+
return
|
151 |
+
while True:
|
152 |
+
task_response = fetch_GoJourney(task_id)
|
153 |
+
if task_response["status"] == "finished":
|
154 |
+
status.update(label="Task finished", state="complete")
|
155 |
+
img_url = task_response["task_result"]["image_url"]
|
156 |
+
st.image(
|
157 |
+
img_url, use_column_width=True, output_format="PNG"
|
158 |
+
)
|
159 |
+
st.json(task_response)
|
160 |
+
break
|
161 |
+
else:
|
162 |
+
status.update(
|
163 |
+
label=f"Task is still processing - {task_response['status']} - {task_response['meta']['task_request']['process_mode']}",
|
164 |
+
state="running",
|
165 |
+
)
|
166 |
+
time.sleep(2)
|
167 |
+
except Exception as e:
|
168 |
+
st.error(f"Error: {e}")
|
169 |
+
st.stop()
|
170 |
+
|
171 |
+
|
172 |
+
def main():
|
173 |
+
"""
|
174 |
+
Main function to run the Streamlit application.
|
175 |
+
|
176 |
+
This function initializes the sidebar configuration and the main page layout.
|
177 |
+
It retrieves the user inputs from the sidebar, and passes them to the main page function.
|
178 |
+
The main page function then generates images based on these inputs.
|
179 |
+
"""
|
180 |
+
(
|
181 |
+
submitted,
|
182 |
+
prompt,
|
183 |
+
uid,
|
184 |
+
secret_key,
|
185 |
+
seed,
|
186 |
+
) = configure_sidebar()
|
187 |
+
main_midjourney(
|
188 |
+
submitted,
|
189 |
+
prompt,
|
190 |
+
uid,
|
191 |
+
secret_key,
|
192 |
+
seed,
|
193 |
+
)
|
194 |
+
if not submitted:
|
195 |
+
with generated_images_placeholder.container():
|
196 |
+
st.image(
|
197 |
+
"https://img.midjourneyapi.xyz/mj/a4a88dfe-4e68-4ff3-8ab1-85a4c2ee5792.png",
|
198 |
+
use_column_width=True,
|
199 |
+
)
|
200 |
+
|
201 |
+
|
202 |
+
if __name__ == "__main__":
|
203 |
+
main()
|
0_π_Home_&_Statistics.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
import plotly.express as px
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
st.set_page_config(page_title="NicheImage Studio", layout="wide")
|
7 |
+
st.markdown("## :black[Image Generation Studio by NicheImage]")
|
8 |
+
replicate_logo = "assets/NicheTensorTransparent.png"
|
9 |
+
|
10 |
+
with st.sidebar:
|
11 |
+
st.image(replicate_logo, use_column_width=True)
|
12 |
+
st.markdown(
|
13 |
+
"""
|
14 |
+
**NicheImage is a decentralized network of image generation models, powered by the Bittensor protocol. Below you find information about the current models on the network.**
|
15 |
+
""",
|
16 |
+
unsafe_allow_html=True,
|
17 |
+
)
|
18 |
+
response = requests.get(
|
19 |
+
"http://proxy_client_nicheimage.nichetensor.com:10003/get_uid_info"
|
20 |
+
)
|
21 |
+
if response.status_code == 200:
|
22 |
+
response = response.json()
|
23 |
+
# Plot distribution of models
|
24 |
+
model_distribution = {}
|
25 |
+
for uid, info in response["all_uid_info"].items():
|
26 |
+
model_name = info["model_name"]
|
27 |
+
model_distribution[model_name] = model_distribution.get(model_name, 0) + 1
|
28 |
+
fig = px.pie(
|
29 |
+
values=list(model_distribution.values()),
|
30 |
+
names=list(model_distribution.keys()),
|
31 |
+
title="Model Distribution",
|
32 |
+
)
|
33 |
+
st.plotly_chart(fig)
|
34 |
+
transformed_dict = []
|
35 |
+
for k, v in response["all_uid_info"].items():
|
36 |
+
transformed_dict.append(
|
37 |
+
{
|
38 |
+
"uid": k,
|
39 |
+
"model_name": v["model_name"],
|
40 |
+
"mean_score": (
|
41 |
+
sum(v["scores"]) / (len(v["scores"])) if len(v["scores"]) > 0 else 0
|
42 |
+
),
|
43 |
+
}
|
44 |
+
)
|
45 |
+
transformed_dict = pd.DataFrame(transformed_dict)
|
46 |
+
# plot N bar chart for N models, sorted by mean score
|
47 |
+
for model in model_distribution.keys():
|
48 |
+
model_data = transformed_dict[transformed_dict["model_name"] == model]
|
49 |
+
model_data = model_data.sort_values(by="mean_score", ascending=False)
|
50 |
+
if model_data.mean_score.sum() == 0:
|
51 |
+
continue
|
52 |
+
st.write(f"Model: {model}")
|
53 |
+
st.bar_chart(model_data[["uid", "mean_score"]].set_index("uid"))
|
54 |
+
|
55 |
+
else:
|
56 |
+
st.error("Error getting miner info")
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
replicate
|
2 |
+
streamlit==1.29
|
3 |
+
requests
|
4 |
+
streamlit-image-select
|
5 |
+
plotly
|
6 |
+
pandas
|
7 |
+
httpx
|
8 |
+
aiohttp
|