|
import gradio as gr |
|
import os |
|
import sys |
|
import json |
|
import requests |
|
|
|
MODEL = "gpt-4o-2024-08-06" |
|
API_URL = os.getenv("API_URL") |
|
DISABLED = os.getenv("DISABLED") == 'True' |
|
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") |
|
print (API_URL) |
|
print (OPENAI_API_KEY) |
|
NUM_THREADS = int(os.getenv("NUM_THREADS")) |
|
|
|
print (NUM_THREADS) |
|
|
|
def exception_handler(exception_type, exception, traceback): |
|
print("%s: %s" % (exception_type.__name__, exception)) |
|
sys.excepthook = exception_handler |
|
sys.tracebacklimit = 0 |
|
|
|
|
|
def parse_codeblock(text): |
|
lines = text.split("\n") |
|
for i, line in enumerate(lines): |
|
if "```" in line: |
|
if line != "```": |
|
lines[i] = f'<pre><code class="{lines[i][3:]}">' |
|
else: |
|
lines[i] = '</code></pre>' |
|
else: |
|
if i > 0: |
|
lines[i] = "<br/>" + line.replace("<", "<").replace(">", ">") |
|
return "".join(lines) |
|
|
|
def predict(inputs, top_p, temperature, chat_counter, chatbot, history, request:gr.Request): |
|
payload = { |
|
"model": MODEL, |
|
"messages": [{"role": "user", "content": f"{inputs}"}], |
|
"temperature" : 1.0, |
|
"top_p":1.0, |
|
"n" : 1, |
|
"stream": True, |
|
"presence_penalty":0, |
|
"frequency_penalty":0, |
|
} |
|
|
|
headers = { |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {OPENAI_API_KEY}", |
|
"Headers": f"{request.kwargs['headers']}" |
|
} |
|
|
|
|
|
if chat_counter != 0 : |
|
messages = [] |
|
for i, data in enumerate(history): |
|
if i % 2 == 0: |
|
role = 'user' |
|
else: |
|
role = 'assistant' |
|
message = {} |
|
message["role"] = role |
|
message["content"] = data |
|
messages.append(message) |
|
|
|
message = {} |
|
message["role"] = "user" |
|
message["content"] = inputs |
|
messages.append(message) |
|
payload = { |
|
"model": MODEL, |
|
"messages": messages, |
|
"temperature" : temperature, |
|
"top_p": top_p, |
|
"n" : 1, |
|
"stream": True, |
|
"presence_penalty":0, |
|
"frequency_penalty":0, |
|
} |
|
|
|
chat_counter += 1 |
|
|
|
history.append(inputs) |
|
token_counter = 0 |
|
partial_words = "" |
|
counter = 0 |
|
|
|
try: |
|
|
|
response = requests.post(API_URL, headers=headers, json=payload, stream=True) |
|
response_code = f"{response}" |
|
|
|
|
|
|
|
|
|
for chunk in response.iter_lines(): |
|
|
|
if counter == 0: |
|
counter += 1 |
|
continue |
|
|
|
|
|
if chunk.decode() : |
|
chunk = chunk.decode() |
|
|
|
if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']: |
|
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"] |
|
if token_counter == 0: |
|
history.append(" " + partial_words) |
|
else: |
|
history[-1] = partial_words |
|
token_counter += 1 |
|
yield [(parse_codeblock(history[i]), parse_codeblock(history[i + 1])) for i in range(0, len(history) - 1, 2) ], history, chat_counter, response, gr.update(interactive=False), gr.update(interactive=False) |
|
except Exception as e: |
|
print (f'error found: {e}') |
|
yield [(parse_codeblock(history[i]), parse_codeblock(history[i + 1])) for i in range(0, len(history) - 1, 2) ], history, chat_counter, response, gr.update(interactive=True), gr.update(interactive=True) |
|
print(json.dumps({"chat_counter": chat_counter, "payload": payload, "partial_words": partial_words, "token_counter": token_counter, "counter": counter})) |
|
|
|
|
|
def reset_textbox(): |
|
return gr.update(value='', interactive=False), gr.update(interactive=False) |
|
|
|
title = """<h1 align="center">GPT-4O: Research Preview (128K token limit, Short-Term Availability)</h1>""" |
|
if DISABLED: |
|
title = """<h1 align="center" style="color:red">This app has reached OpenAI's usage limit. Please check back tomorrow.</h1>""" |
|
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form: |
|
``` |
|
User: <utterance> |
|
Assistant: <utterance> |
|
User: <utterance> |
|
Assistant: <utterance> |
|
... |
|
``` |
|
In this app, you can explore the outputs of a gpt-4 turbo LLM. |
|
""" |
|
|
|
theme = gr.themes.Default(primary_hue="green") |
|
|
|
with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;} |
|
#chatbot {height: 520px; overflow: auto;}""", |
|
theme=theme) as demo: |
|
gr.HTML(title) |
|
|
|
|
|
gr.HTML("""<h3 align="center" style="color: red;">If this app doesn't respond, consider trying our other GPT-4O app:<br/><a href="https://huggingface.co/spaces/yuntian-deng/ChatGPT4Turbo">https://huggingface.co/spaces/yuntian-deng/ChatGPT4Turbo</a></h3>""") |
|
|
|
|
|
with gr.Column(elem_id = "col_container", visible=False) as main_block: |
|
|
|
|
|
chatbot = gr.Chatbot(elem_id='chatbot') |
|
inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter") |
|
state = gr.State([]) |
|
with gr.Row(): |
|
with gr.Column(scale=7): |
|
b1 = gr.Button(visible=not DISABLED).style(full_width=True) |
|
with gr.Column(scale=3): |
|
server_status_code = gr.Textbox(label="Status code from OpenAI server", ) |
|
|
|
|
|
with gr.Accordion("Parameters", open=False): |
|
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",) |
|
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",) |
|
|
|
|
|
chat_counter = gr.Number(value=0, visible=False, precision=0) |
|
|
|
with gr.Column(elem_id = "user_consent_container") as user_consent_block: |
|
|
|
accept_checkbox = gr.Checkbox(visible=False) |
|
js = "(x) => confirm('By clicking \"OK\", I agree that my data may be published or shared.')" |
|
with gr.Accordion("User Consent for Data Collection, Use, and Sharing", open=True): |
|
gr.HTML(""" |
|
<div> |
|
<p>By using our app, which is powered by OpenAI's API, you acknowledge and agree to the following terms regarding the data you provide:</p> |
|
<ol> |
|
<li><strong>Collection:</strong> We may collect information, including the inputs you type into our app, the outputs generated by OpenAI's API, and certain technical details about your device and connection (such as browser type, operating system, and IP address) provided by your device's request headers.</li> |
|
<li><strong>Use:</strong> We may use the collected data for research purposes, to improve our services, and to develop new products or services, including commercial applications, and for security purposes, such as protecting against unauthorized access and attacks.</li> |
|
<li><strong>Sharing and Publication:</strong> Your data, including the technical details collected from your device's request headers, may be published, shared with third parties, or used for analysis and reporting purposes.</li> |
|
<li><strong>Data Retention:</strong> We may retain your data, including the technical details collected from your device's request headers, for as long as necessary.</li> |
|
</ol> |
|
<p>By continuing to use our app, you provide your explicit consent to the collection, use, and potential sharing of your data as described above. If you do not agree with our data collection, use, and sharing practices, please do not use our app.</p> |
|
</div> |
|
""") |
|
accept_button = gr.Button("I Agree") |
|
|
|
def enable_inputs(): |
|
return user_consent_block.update(visible=False), main_block.update(visible=True) |
|
|
|
accept_button.click(None, None, accept_checkbox, _js=js, queue=False) |
|
accept_checkbox.change(fn=enable_inputs, inputs=[], outputs=[user_consent_block, main_block], queue=False) |
|
|
|
inputs.submit(reset_textbox, [], [inputs, b1], queue=False) |
|
inputs.submit(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code, inputs, b1],) |
|
b1.click(reset_textbox, [], [inputs, b1], queue=False) |
|
b1.click(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code, inputs, b1],) |
|
|
|
demo.queue(max_size=20, concurrency_count=NUM_THREADS, api_open=False).launch(share=False) |