thedynamicpacif commited on
Commit
2efe8b1
·
1 Parent(s): 9be04fd

Improved map image display

Browse files

Added shapely library and updated image processing to improve GeoJSON polygon generation, fixing issues with excessive polygons and incorrect map display. The `utils/geospatial.py`, `app.py`, `.replit` and `pyproject.toml` files were modified.

Replit-Commit-Author: Agent
Replit-Commit-Session-Id: c7b687d7-8856-49d8-87a3-9d7f3f6499f6
Replit-Commit-Screenshot-Url: https://storage.googleapis.com/screenshot-production-us-central1/d7727d0d-3b25-49de-9476-c76c61abfa65/751a3a96-c7ad-42a9-a160-a9b0b9f7217c.jpg

Files changed (5) hide show
  1. .replit +1 -1
  2. app.py +3 -3
  3. pyproject.toml +1 -0
  4. utils/geospatial.py +271 -0
  5. uv.lock +45 -0
.replit CHANGED
@@ -2,7 +2,7 @@ modules = ["python-3.11"]
2
 
3
  [nix]
4
  channel = "stable-24_05"
5
- packages = ["freetype", "lcms2", "libGL", "libGLU", "libimagequant", "libjpeg", "libtiff", "libwebp", "libxcrypt", "openjpeg", "tcl", "tk", "zlib"]
6
 
7
  [deployment]
8
  deploymentTarget = "autoscale"
 
2
 
3
  [nix]
4
  channel = "stable-24_05"
5
+ packages = ["freetype", "geos", "lcms2", "libGL", "libGLU", "libimagequant", "libjpeg", "libtiff", "libwebp", "libxcrypt", "openjpeg", "tcl", "tk", "zlib"]
6
 
7
  [deployment]
8
  deploymentTarget = "autoscale"
app.py CHANGED
@@ -5,7 +5,7 @@ from flask import Flask, render_template, request, jsonify, send_from_directory
5
  import json
6
  from werkzeug.utils import secure_filename
7
  from utils.image_processing import process_image
8
- from utils.geo_processing import convert_to_geojson
9
 
10
  # Configure logging
11
  logging.basicConfig(level=logging.DEBUG)
@@ -58,8 +58,8 @@ def upload_file():
58
  # Process the image
59
  processed_image_path = process_image(file_path, PROCESSED_FOLDER)
60
 
61
- # Convert processed image to GeoJSON
62
- geojson_data = convert_to_geojson(processed_image_path)
63
 
64
  # Save GeoJSON to file
65
  geojson_filename = f"{uuid.uuid4().hex}.geojson"
 
5
  import json
6
  from werkzeug.utils import secure_filename
7
  from utils.image_processing import process_image
8
+ from utils.geospatial import process_image_to_geojson
9
 
10
  # Configure logging
11
  logging.basicConfig(level=logging.DEBUG)
 
58
  # Process the image
59
  processed_image_path = process_image(file_path, PROCESSED_FOLDER)
60
 
61
+ # Convert processed image to GeoJSON using improved processing
62
+ geojson_data = process_image_to_geojson(processed_image_path)
63
 
64
  # Save GeoJSON to file
65
  geojson_filename = f"{uuid.uuid4().hex}.geojson"
pyproject.toml CHANGED
@@ -12,5 +12,6 @@ dependencies = [
12
  "opencv-python>=4.11.0.86",
13
  "pillow>=11.2.1",
14
  "psycopg2-binary>=2.9.10",
 
15
  "werkzeug>=3.1.3",
16
  ]
 
12
  "opencv-python>=4.11.0.86",
13
  "pillow>=11.2.1",
14
  "psycopg2-binary>=2.9.10",
15
+ "shapely>=2.1.0",
16
  "werkzeug>=3.1.3",
17
  ]
utils/geospatial.py ADDED
@@ -0,0 +1,271 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Geospatial utilities for image processing and GeoJSON generation.
3
+ This module adapts techniques from the geoai library for better polygon generation
4
+ with simplified dependencies.
5
+ """
6
+
7
+ import os
8
+ import logging
9
+ import uuid
10
+ import numpy as np
11
+ import cv2
12
+ from PIL import Image
13
+ import json
14
+ from shapely.geometry import Polygon, MultiPolygon, mapping
15
+ from shapely import ops
16
+
17
+ def extract_contours(image_path, min_area=50, epsilon_factor=0.002):
18
+ """
19
+ Extract contours from an image and convert them to polygons.
20
+ Uses OpenCV's contour detection with douglas-peucker simplification.
21
+
22
+ Args:
23
+ image_path (str): Path to the processed image
24
+ min_area (int): Minimum contour area to keep
25
+ epsilon_factor (float): Simplification factor for douglas-peucker algorithm
26
+
27
+ Returns:
28
+ list: List of polygon objects
29
+ """
30
+ try:
31
+ # Read the image
32
+ img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
33
+ if img is None:
34
+ # Try using PIL if OpenCV fails
35
+ pil_img = Image.open(image_path).convert('L')
36
+ img = np.array(pil_img)
37
+
38
+ # Apply threshold if needed
39
+ _, thresh = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
40
+
41
+ # Find contours
42
+ contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
43
+
44
+ polygons = []
45
+ for contour in contours:
46
+ # Filter small contours
47
+ area = cv2.contourArea(contour)
48
+ if area < min_area:
49
+ continue
50
+
51
+ # Apply Douglas-Peucker algorithm to simplify contours
52
+ epsilon = epsilon_factor * cv2.arcLength(contour, True)
53
+ approx = cv2.approxPolyDP(contour, epsilon, True)
54
+
55
+ # Convert to polygon
56
+ if len(approx) >= 3: # At least 3 points needed for a polygon
57
+ polygon_points = []
58
+ for point in approx:
59
+ x, y = point[0]
60
+ polygon_points.append((float(x), float(y)))
61
+
62
+ # Create a valid polygon (close it if needed)
63
+ if polygon_points[0] != polygon_points[-1]:
64
+ polygon_points.append(polygon_points[0])
65
+
66
+ # Create shapely polygon
67
+ polygon = Polygon(polygon_points)
68
+ if polygon.is_valid:
69
+ polygons.append(polygon)
70
+
71
+ return polygons
72
+
73
+ except Exception as e:
74
+ logging.error(f"Error extracting contours: {str(e)}")
75
+ return []
76
+
77
+ def simplify_polygons(polygons, tolerance=1.0):
78
+ """
79
+ Apply polygon simplification to reduce the number of vertices.
80
+
81
+ Args:
82
+ polygons (list): List of shapely Polygon objects
83
+ tolerance (float): Simplification tolerance
84
+
85
+ Returns:
86
+ list: List of simplified polygons
87
+ """
88
+ simplified = []
89
+ for polygon in polygons:
90
+ # Apply simplification
91
+ simp = polygon.simplify(tolerance, preserve_topology=True)
92
+ if simp.is_valid and not simp.is_empty:
93
+ simplified.append(simp)
94
+
95
+ return simplified
96
+
97
+ def regularize_polygons(polygons):
98
+ """
99
+ Regularize polygons to make them more rectangular when appropriate.
100
+
101
+ Args:
102
+ polygons (list): List of shapely Polygon objects
103
+
104
+ Returns:
105
+ list: List of regularized polygons
106
+ """
107
+ regularized = []
108
+ for polygon in polygons:
109
+ try:
110
+ # Check if the polygon is roughly rectangular using a simple heuristic
111
+ bounds = polygon.bounds
112
+ width = bounds[2] - bounds[0]
113
+ height = bounds[3] - bounds[1]
114
+ area_ratio = polygon.area / (width * height)
115
+
116
+ # If it's at least 80% similar to a rectangle, make it rectangular
117
+ if area_ratio > 0.8:
118
+ # Replace with the minimum bounding rectangle
119
+ minx, miny, maxx, maxy = polygon.bounds
120
+ regularized.append(Polygon([
121
+ (minx, miny), (maxx, miny),
122
+ (maxx, maxy), (minx, maxy), (minx, miny)
123
+ ]))
124
+ else:
125
+ regularized.append(polygon)
126
+ except Exception as e:
127
+ logging.warning(f"Error regularizing polygon: {str(e)}")
128
+ regularized.append(polygon)
129
+
130
+ return regularized
131
+
132
+ def merge_nearby_polygons(polygons, distance_threshold=5.0):
133
+ """
134
+ Merge polygons that are close to each other to reduce the polygon count.
135
+
136
+ Args:
137
+ polygons (list): List of shapely Polygon objects
138
+ distance_threshold (float): Distance threshold for merging
139
+
140
+ Returns:
141
+ list: List of merged polygons
142
+ """
143
+ if not polygons:
144
+ return []
145
+
146
+ # Buffer polygons slightly to create overlaps for nearby polygons
147
+ buffered = [polygon.buffer(distance_threshold) for polygon in polygons]
148
+
149
+ # Union all buffered polygons
150
+ union = ops.unary_union(buffered)
151
+
152
+ # Convert the result to a list of polygons
153
+ if isinstance(union, Polygon):
154
+ return [union]
155
+ elif isinstance(union, MultiPolygon):
156
+ return list(union.geoms)
157
+ else:
158
+ return []
159
+
160
+ def convert_to_geojson_with_transform(polygons, image_height, image_width,
161
+ min_lat=None, min_lon=None, max_lat=None, max_lon=None):
162
+ """
163
+ Convert polygons to GeoJSON with proper geographic transformation.
164
+
165
+ Args:
166
+ polygons (list): List of shapely Polygon objects
167
+ image_height (int): Height of the source image
168
+ image_width (int): Width of the source image
169
+ min_lat (float, optional): Minimum latitude for geographic bounds
170
+ min_lon (float, optional): Minimum longitude for geographic bounds
171
+ max_lat (float, optional): Maximum latitude for geographic bounds
172
+ max_lon (float, optional): Maximum longitude for geographic bounds
173
+
174
+ Returns:
175
+ dict: GeoJSON object
176
+ """
177
+ # Set default geographic bounds if not provided
178
+ if None in (min_lon, min_lat, max_lon, max_lat):
179
+ # Default to somewhere neutral (center of Atlantic Ocean)
180
+ min_lon, min_lat = -30.0, 0.0
181
+ max_lon, max_lat = -20.0, 10.0
182
+
183
+ # Create a GeoJSON feature collection
184
+ geojson = {
185
+ "type": "FeatureCollection",
186
+ "features": []
187
+ }
188
+
189
+ # Function to transform pixel coordinates to geographic coordinates
190
+ def transform_point(x, y):
191
+ # Linear interpolation
192
+ lon = min_lon + (x / image_width) * (max_lon - min_lon)
193
+ # Invert y-axis for geographic coordinates
194
+ lat = max_lat - (y / image_height) * (max_lat - min_lat)
195
+ return lon, lat
196
+
197
+ # Convert each polygon to a GeoJSON feature
198
+ for i, polygon in enumerate(polygons):
199
+ # Extract coordinates
200
+ coords = list(polygon.exterior.coords)
201
+
202
+ # Transform coordinates to geographic space
203
+ geo_coords = [transform_point(x, y) for x, y in coords]
204
+
205
+ # Create GeoJSON geometry
206
+ geometry = {
207
+ "type": "Polygon",
208
+ "coordinates": [geo_coords]
209
+ }
210
+
211
+ # Create GeoJSON feature
212
+ feature = {
213
+ "type": "Feature",
214
+ "id": i + 1,
215
+ "properties": {
216
+ "name": f"Feature {i+1}"
217
+ },
218
+ "geometry": geometry
219
+ }
220
+
221
+ geojson["features"].append(feature)
222
+
223
+ return geojson
224
+
225
+ def process_image_to_geojson(image_path):
226
+ """
227
+ Complete pipeline to convert an image to a simplified GeoJSON.
228
+
229
+ Args:
230
+ image_path (str): Path to the processed image
231
+
232
+ Returns:
233
+ dict: GeoJSON object
234
+ """
235
+ try:
236
+ # Open image to get dimensions
237
+ img = Image.open(image_path)
238
+ width, height = img.size
239
+
240
+ # Extract contours from the image
241
+ polygons = extract_contours(image_path)
242
+ logging.info(f"Extracted {len(polygons)} initial polygons")
243
+
244
+ if not polygons:
245
+ logging.warning("No polygons found in the image")
246
+ return {"type": "FeatureCollection", "features": []}
247
+
248
+ # Simplify polygons to reduce vertex count
249
+ polygons = simplify_polygons(polygons, tolerance=2.0)
250
+ logging.info(f"After simplification: {len(polygons)} polygons")
251
+
252
+ # Regularize appropriate polygons
253
+ polygons = regularize_polygons(polygons)
254
+
255
+ # Merge nearby polygons to reduce count
256
+ polygons = merge_nearby_polygons(polygons)
257
+ logging.info(f"After merging: {len(polygons)} polygons")
258
+
259
+ # Convert to GeoJSON with proper transformation
260
+ geojson = convert_to_geojson_with_transform(
261
+ polygons, height, width,
262
+ # Use generic bounds as we don't have real georeferencing
263
+ min_lat=40.0, min_lon=-75.0,
264
+ max_lat=42.0, max_lon=-73.0
265
+ )
266
+
267
+ return geojson
268
+
269
+ except Exception as e:
270
+ logging.error(f"Error in GeoJSON processing: {str(e)}")
271
+ return {"type": "FeatureCollection", "features": []}
uv.lock CHANGED
@@ -412,6 +412,7 @@ dependencies = [
412
  { name = "opencv-python" },
413
  { name = "pillow" },
414
  { name = "psycopg2-binary" },
 
415
  { name = "werkzeug" },
416
  ]
417
 
@@ -425,9 +426,53 @@ requires-dist = [
425
  { name = "opencv-python", specifier = ">=4.11.0.86" },
426
  { name = "pillow", specifier = ">=11.2.1" },
427
  { name = "psycopg2-binary", specifier = ">=2.9.10" },
 
428
  { name = "werkzeug", specifier = ">=3.1.3" },
429
  ]
430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431
  [[package]]
432
  name = "sqlalchemy"
433
  version = "2.0.40"
 
412
  { name = "opencv-python" },
413
  { name = "pillow" },
414
  { name = "psycopg2-binary" },
415
+ { name = "shapely" },
416
  { name = "werkzeug" },
417
  ]
418
 
 
426
  { name = "opencv-python", specifier = ">=4.11.0.86" },
427
  { name = "pillow", specifier = ">=11.2.1" },
428
  { name = "psycopg2-binary", specifier = ">=2.9.10" },
429
+ { name = "shapely", specifier = ">=2.1.0" },
430
  { name = "werkzeug", specifier = ">=3.1.3" },
431
  ]
432
 
433
+ [[package]]
434
+ name = "shapely"
435
+ version = "2.1.0"
436
+ source = { registry = "https://pypi.org/simple" }
437
+ dependencies = [
438
+ { name = "numpy" },
439
+ ]
440
+ sdist = { url = "https://files.pythonhosted.org/packages/fb/fe/3b0d2f828ffaceadcdcb51b75b9c62d98e62dd95ce575278de35f24a1c20/shapely-2.1.0.tar.gz", hash = "sha256:2cbe90e86fa8fc3ca8af6ffb00a77b246b918c7cf28677b7c21489b678f6b02e", size = 313617 }
441
+ wheels = [
442
+ { url = "https://files.pythonhosted.org/packages/1c/37/ae448f06f363ff3dfe4bae890abd842c4e3e9edaf01245dbc9b97008c9e6/shapely-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c8323031ef7c1bdda7a92d5ddbc7b6b62702e73ba37e9a8ccc8da99ec2c0b87c", size = 1820974 },
443
+ { url = "https://files.pythonhosted.org/packages/78/da/ea2a898e93c6953c5eef353a0e1781a0013a1352f2b90aa9ab0b800e0c75/shapely-2.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4da7c6cd748d86ec6aace99ad17129d30954ccf5e73e9911cdb5f0fa9658b4f8", size = 1624137 },
444
+ { url = "https://files.pythonhosted.org/packages/64/4a/f903f82f0fabcd3f43ea2e8132cabda079119247330a9fe58018c39c4e22/shapely-2.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f0cdf85ff80831137067e7a237085a3ee72c225dba1b30beef87f7d396cf02b", size = 2957161 },
445
+ { url = "https://files.pythonhosted.org/packages/92/07/3e2738c542d73182066196b8ce99388cb537d19e300e428d50b1537e3b21/shapely-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:41f2be5d79aac39886f23000727cf02001aef3af8810176c29ee12cdc3ef3a50", size = 3078530 },
446
+ { url = "https://files.pythonhosted.org/packages/82/08/32210e63d8f8af9142d37c2433ece4846862cdac91a0fe66f040780a71bd/shapely-2.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:21a4515009f56d7a159cf5c2554264e82f56405b4721f9a422cb397237c5dca8", size = 3902208 },
447
+ { url = "https://files.pythonhosted.org/packages/19/0e/0abb5225f8a32fbdb615476637038a7d2db40c0af46d1bb3a08b869bee39/shapely-2.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:15cebc323cec2cb6b2eaa310fdfc621f6dbbfaf6bde336d13838fcea76c885a9", size = 4082863 },
448
+ { url = "https://files.pythonhosted.org/packages/f8/1b/7cd816fd388108c872ab7e2930180b02d0c34891213f361e4a66e5e032f2/shapely-2.1.0-cp311-cp311-win32.whl", hash = "sha256:cad51b7a5c8f82f5640472944a74f0f239123dde9a63042b3c5ea311739b7d20", size = 1527488 },
449
+ { url = "https://files.pythonhosted.org/packages/fd/28/7bb5b1944d4002d4b2f967762018500381c3b532f98e456bbda40c3ded68/shapely-2.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:d4005309dde8658e287ad9c435c81877f6a95a9419b932fa7a1f34b120f270ae", size = 1708311 },
450
+ { url = "https://files.pythonhosted.org/packages/4e/d1/6a9371ec39d3ef08e13225594e6c55b045209629afd9e6d403204507c2a8/shapely-2.1.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:53e7ee8bd8609cf12ee6dce01ea5affe676976cf7049315751d53d8db6d2b4b2", size = 1830732 },
451
+ { url = "https://files.pythonhosted.org/packages/32/87/799e3e48be7ce848c08509b94d2180f4ddb02e846e3c62d0af33da4d78d3/shapely-2.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3cab20b665d26dbec0b380e15749bea720885a481fa7b1eedc88195d4a98cfa4", size = 1638404 },
452
+ { url = "https://files.pythonhosted.org/packages/85/00/6665d77f9dd09478ab0993b8bc31668aec4fd3e5f1ddd1b28dd5830e47be/shapely-2.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f4a38b39a09340273c3c92b3b9a374272a12cc7e468aeeea22c1c46217a03e5c", size = 2945316 },
453
+ { url = "https://files.pythonhosted.org/packages/34/49/738e07d10bbc67cae0dcfe5a484c6e518a517f4f90550dda2adf3a78b9f2/shapely-2.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:edaec656bdd9b71278b98e6f77c464b1c3b2daa9eace78012ff0f0b4b5b15b04", size = 3063099 },
454
+ { url = "https://files.pythonhosted.org/packages/88/b8/138098674559362ab29f152bff3b6630de423378fbb0324812742433a4ef/shapely-2.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:c8a732ddd9b25e7a54aa748e7df8fd704e23e5d5d35b7d376d80bffbfc376d04", size = 3887873 },
455
+ { url = "https://files.pythonhosted.org/packages/67/a8/fdae7c2db009244991d86f4d2ca09d2f5ccc9d41c312c3b1ee1404dc55da/shapely-2.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:9c93693ad8adfdc9138a5a2d42da02da94f728dd2e82d2f0f442f10e25027f5f", size = 4067004 },
456
+ { url = "https://files.pythonhosted.org/packages/ed/78/17e17d91b489019379df3ee1afc4bd39787b232aaa1d540f7d376f0280b7/shapely-2.1.0-cp312-cp312-win32.whl", hash = "sha256:d8ac6604eefe807e71a908524de23a37920133a1729fe3a4dfe0ed82c044cbf4", size = 1527366 },
457
+ { url = "https://files.pythonhosted.org/packages/b8/bd/9249bd6dda948441e25e4fb14cbbb5205146b0fff12c66b19331f1ff2141/shapely-2.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:f4f47e631aa4f9ec5576eac546eb3f38802e2f82aeb0552f9612cb9a14ece1db", size = 1708265 },
458
+ { url = "https://files.pythonhosted.org/packages/8d/77/4e368704b2193e74498473db4461d697cc6083c96f8039367e59009d78bd/shapely-2.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:b64423295b563f43a043eb786e7a03200ebe68698e36d2b4b1c39f31dfb50dfb", size = 1830029 },
459
+ { url = "https://files.pythonhosted.org/packages/71/3c/d888597bda680e4de987316b05ca9db07416fa29523beff64f846503302f/shapely-2.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1b5578f45adc25b235b22d1ccb9a0348c8dc36f31983e57ea129a88f96f7b870", size = 1637999 },
460
+ { url = "https://files.pythonhosted.org/packages/03/8d/ee0e23b7ef88fba353c63a81f1f329c77f5703835db7b165e7c0b8b7f839/shapely-2.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d1a7e83d383b27f02b684e50ab7f34e511c92e33b6ca164a6a9065705dd64bcb", size = 2929348 },
461
+ { url = "https://files.pythonhosted.org/packages/d1/a7/5c9cb413e4e2ce52c16be717e94abd40ce91b1f8974624d5d56154c5d40b/shapely-2.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:942031eb4d8f7b3b22f43ba42c09c7aa3d843aa10d5cc1619fe816e923b66e55", size = 3048973 },
462
+ { url = "https://files.pythonhosted.org/packages/84/23/45b90c0bd2157b238490ca56ef2eedf959d3514c7d05475f497a2c88b6d9/shapely-2.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:d2843c456a2e5627ee6271800f07277c0d2652fb287bf66464571a057dbc00b3", size = 3873148 },
463
+ { url = "https://files.pythonhosted.org/packages/c0/bc/ed7d5d37f5395166042576f0c55a12d7e56102799464ba7ea3a72a38c769/shapely-2.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:8c4b17469b7f39a5e6a7cfea79f38ae08a275427f41fe8b48c372e1449147908", size = 4052655 },
464
+ { url = "https://files.pythonhosted.org/packages/c0/8f/a1dafbb10d20d1c569f2db3fb1235488f624dafe8469e8ce65356800ba31/shapely-2.1.0-cp313-cp313-win32.whl", hash = "sha256:30e967abd08fce49513d4187c01b19f139084019f33bec0673e8dbeb557c45e4", size = 1526600 },
465
+ { url = "https://files.pythonhosted.org/packages/e3/f0/9f8cdf2258d7aed742459cea51c70d184de92f5d2d6f5f7f1ded90a18c31/shapely-2.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:1dc8d4364483a14aba4c844b7bd16a6fa3728887e2c33dfa1afa34a3cf4d08a5", size = 1707115 },
466
+ { url = "https://files.pythonhosted.org/packages/75/ed/32952df461753a65b3e5d24c8efb361d3a80aafaef0b70d419063f6f2c11/shapely-2.1.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:673e073fea099d1c82f666fb7ab0a00a77eff2999130a69357ce11941260d855", size = 1824847 },
467
+ { url = "https://files.pythonhosted.org/packages/ff/b9/2284de512af30b02f93ddcdd2e5c79834a3cf47fa3ca11b0f74396feb046/shapely-2.1.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:6d1513f915a56de67659fe2047c1ad5ff0f8cbff3519d1e74fced69c9cb0e7da", size = 1631035 },
468
+ { url = "https://files.pythonhosted.org/packages/35/16/a59f252a7e736b73008f10d0950ffeeb0d5953be7c0bdffd39a02a6ba310/shapely-2.1.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d6a7043178890b9e028d80496ff4c79dc7629bff4d78a2f25323b661756bab8", size = 2968639 },
469
+ { url = "https://files.pythonhosted.org/packages/a5/0a/6a20eca7b0092cfa243117e8e145a58631a4833a0a519ec9b445172e83a0/shapely-2.1.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb638378dc3d76f7e85b67d7e2bb1366811912430ac9247ac00c127c2b444cdc", size = 3055713 },
470
+ { url = "https://files.pythonhosted.org/packages/fb/44/eeb0c7583b1453d1cf7a319a1d738e08f98a5dc993fa1ef3c372983e4cb5/shapely-2.1.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:737124e87d91d616acf9a911f74ac55e05db02a43a6a7245b3d663817b876055", size = 3890478 },
471
+ { url = "https://files.pythonhosted.org/packages/5d/6e/37ff3c6af1d408cacb0a7d7bfea7b8ab163a5486e35acb08997eae9d8756/shapely-2.1.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:8e6c229e7bb87aae5df82fa00b6718987a43ec168cc5affe095cca59d233f314", size = 4036148 },
472
+ { url = "https://files.pythonhosted.org/packages/c8/6a/8c0b7de3aeb5014a23f06c5e9d3c7852ebcf0d6b00fe660b93261e310e24/shapely-2.1.0-cp313-cp313t-win32.whl", hash = "sha256:a9580bda119b1f42f955aa8e52382d5c73f7957e0203bc0c0c60084846f3db94", size = 1535993 },
473
+ { url = "https://files.pythonhosted.org/packages/a8/91/ae80359a58409d52e4d62c7eacc7eb3ddee4b9135f1db884b6a43cf2e174/shapely-2.1.0-cp313-cp313t-win_amd64.whl", hash = "sha256:e8ff4e5cfd799ba5b6f37b5d5527dbd85b4a47c65b6d459a03d0962d2a9d4d10", size = 1717777 },
474
+ ]
475
+
476
  [[package]]
477
  name = "sqlalchemy"
478
  version = "2.0.40"