Spaces:
Sleeping
Sleeping
thedynamicpacif
commited on
Commit
·
2efe8b1
1
Parent(s):
9be04fd
Improved map image display
Browse filesAdded shapely library and updated image processing to improve GeoJSON polygon generation, fixing issues with excessive polygons and incorrect map display. The `utils/geospatial.py`, `app.py`, `.replit` and `pyproject.toml` files were modified.
Replit-Commit-Author: Agent
Replit-Commit-Session-Id: c7b687d7-8856-49d8-87a3-9d7f3f6499f6
Replit-Commit-Screenshot-Url: https://storage.googleapis.com/screenshot-production-us-central1/d7727d0d-3b25-49de-9476-c76c61abfa65/751a3a96-c7ad-42a9-a160-a9b0b9f7217c.jpg
- .replit +1 -1
- app.py +3 -3
- pyproject.toml +1 -0
- utils/geospatial.py +271 -0
- uv.lock +45 -0
.replit
CHANGED
|
@@ -2,7 +2,7 @@ modules = ["python-3.11"]
|
|
| 2 |
|
| 3 |
[nix]
|
| 4 |
channel = "stable-24_05"
|
| 5 |
-
packages = ["freetype", "lcms2", "libGL", "libGLU", "libimagequant", "libjpeg", "libtiff", "libwebp", "libxcrypt", "openjpeg", "tcl", "tk", "zlib"]
|
| 6 |
|
| 7 |
[deployment]
|
| 8 |
deploymentTarget = "autoscale"
|
|
|
|
| 2 |
|
| 3 |
[nix]
|
| 4 |
channel = "stable-24_05"
|
| 5 |
+
packages = ["freetype", "geos", "lcms2", "libGL", "libGLU", "libimagequant", "libjpeg", "libtiff", "libwebp", "libxcrypt", "openjpeg", "tcl", "tk", "zlib"]
|
| 6 |
|
| 7 |
[deployment]
|
| 8 |
deploymentTarget = "autoscale"
|
app.py
CHANGED
|
@@ -5,7 +5,7 @@ from flask import Flask, render_template, request, jsonify, send_from_directory
|
|
| 5 |
import json
|
| 6 |
from werkzeug.utils import secure_filename
|
| 7 |
from utils.image_processing import process_image
|
| 8 |
-
from utils.
|
| 9 |
|
| 10 |
# Configure logging
|
| 11 |
logging.basicConfig(level=logging.DEBUG)
|
|
@@ -58,8 +58,8 @@ def upload_file():
|
|
| 58 |
# Process the image
|
| 59 |
processed_image_path = process_image(file_path, PROCESSED_FOLDER)
|
| 60 |
|
| 61 |
-
# Convert processed image to GeoJSON
|
| 62 |
-
geojson_data =
|
| 63 |
|
| 64 |
# Save GeoJSON to file
|
| 65 |
geojson_filename = f"{uuid.uuid4().hex}.geojson"
|
|
|
|
| 5 |
import json
|
| 6 |
from werkzeug.utils import secure_filename
|
| 7 |
from utils.image_processing import process_image
|
| 8 |
+
from utils.geospatial import process_image_to_geojson
|
| 9 |
|
| 10 |
# Configure logging
|
| 11 |
logging.basicConfig(level=logging.DEBUG)
|
|
|
|
| 58 |
# Process the image
|
| 59 |
processed_image_path = process_image(file_path, PROCESSED_FOLDER)
|
| 60 |
|
| 61 |
+
# Convert processed image to GeoJSON using improved processing
|
| 62 |
+
geojson_data = process_image_to_geojson(processed_image_path)
|
| 63 |
|
| 64 |
# Save GeoJSON to file
|
| 65 |
geojson_filename = f"{uuid.uuid4().hex}.geojson"
|
pyproject.toml
CHANGED
|
@@ -12,5 +12,6 @@ dependencies = [
|
|
| 12 |
"opencv-python>=4.11.0.86",
|
| 13 |
"pillow>=11.2.1",
|
| 14 |
"psycopg2-binary>=2.9.10",
|
|
|
|
| 15 |
"werkzeug>=3.1.3",
|
| 16 |
]
|
|
|
|
| 12 |
"opencv-python>=4.11.0.86",
|
| 13 |
"pillow>=11.2.1",
|
| 14 |
"psycopg2-binary>=2.9.10",
|
| 15 |
+
"shapely>=2.1.0",
|
| 16 |
"werkzeug>=3.1.3",
|
| 17 |
]
|
utils/geospatial.py
ADDED
|
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Geospatial utilities for image processing and GeoJSON generation.
|
| 3 |
+
This module adapts techniques from the geoai library for better polygon generation
|
| 4 |
+
with simplified dependencies.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import logging
|
| 9 |
+
import uuid
|
| 10 |
+
import numpy as np
|
| 11 |
+
import cv2
|
| 12 |
+
from PIL import Image
|
| 13 |
+
import json
|
| 14 |
+
from shapely.geometry import Polygon, MultiPolygon, mapping
|
| 15 |
+
from shapely import ops
|
| 16 |
+
|
| 17 |
+
def extract_contours(image_path, min_area=50, epsilon_factor=0.002):
|
| 18 |
+
"""
|
| 19 |
+
Extract contours from an image and convert them to polygons.
|
| 20 |
+
Uses OpenCV's contour detection with douglas-peucker simplification.
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
image_path (str): Path to the processed image
|
| 24 |
+
min_area (int): Minimum contour area to keep
|
| 25 |
+
epsilon_factor (float): Simplification factor for douglas-peucker algorithm
|
| 26 |
+
|
| 27 |
+
Returns:
|
| 28 |
+
list: List of polygon objects
|
| 29 |
+
"""
|
| 30 |
+
try:
|
| 31 |
+
# Read the image
|
| 32 |
+
img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
|
| 33 |
+
if img is None:
|
| 34 |
+
# Try using PIL if OpenCV fails
|
| 35 |
+
pil_img = Image.open(image_path).convert('L')
|
| 36 |
+
img = np.array(pil_img)
|
| 37 |
+
|
| 38 |
+
# Apply threshold if needed
|
| 39 |
+
_, thresh = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
|
| 40 |
+
|
| 41 |
+
# Find contours
|
| 42 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 43 |
+
|
| 44 |
+
polygons = []
|
| 45 |
+
for contour in contours:
|
| 46 |
+
# Filter small contours
|
| 47 |
+
area = cv2.contourArea(contour)
|
| 48 |
+
if area < min_area:
|
| 49 |
+
continue
|
| 50 |
+
|
| 51 |
+
# Apply Douglas-Peucker algorithm to simplify contours
|
| 52 |
+
epsilon = epsilon_factor * cv2.arcLength(contour, True)
|
| 53 |
+
approx = cv2.approxPolyDP(contour, epsilon, True)
|
| 54 |
+
|
| 55 |
+
# Convert to polygon
|
| 56 |
+
if len(approx) >= 3: # At least 3 points needed for a polygon
|
| 57 |
+
polygon_points = []
|
| 58 |
+
for point in approx:
|
| 59 |
+
x, y = point[0]
|
| 60 |
+
polygon_points.append((float(x), float(y)))
|
| 61 |
+
|
| 62 |
+
# Create a valid polygon (close it if needed)
|
| 63 |
+
if polygon_points[0] != polygon_points[-1]:
|
| 64 |
+
polygon_points.append(polygon_points[0])
|
| 65 |
+
|
| 66 |
+
# Create shapely polygon
|
| 67 |
+
polygon = Polygon(polygon_points)
|
| 68 |
+
if polygon.is_valid:
|
| 69 |
+
polygons.append(polygon)
|
| 70 |
+
|
| 71 |
+
return polygons
|
| 72 |
+
|
| 73 |
+
except Exception as e:
|
| 74 |
+
logging.error(f"Error extracting contours: {str(e)}")
|
| 75 |
+
return []
|
| 76 |
+
|
| 77 |
+
def simplify_polygons(polygons, tolerance=1.0):
|
| 78 |
+
"""
|
| 79 |
+
Apply polygon simplification to reduce the number of vertices.
|
| 80 |
+
|
| 81 |
+
Args:
|
| 82 |
+
polygons (list): List of shapely Polygon objects
|
| 83 |
+
tolerance (float): Simplification tolerance
|
| 84 |
+
|
| 85 |
+
Returns:
|
| 86 |
+
list: List of simplified polygons
|
| 87 |
+
"""
|
| 88 |
+
simplified = []
|
| 89 |
+
for polygon in polygons:
|
| 90 |
+
# Apply simplification
|
| 91 |
+
simp = polygon.simplify(tolerance, preserve_topology=True)
|
| 92 |
+
if simp.is_valid and not simp.is_empty:
|
| 93 |
+
simplified.append(simp)
|
| 94 |
+
|
| 95 |
+
return simplified
|
| 96 |
+
|
| 97 |
+
def regularize_polygons(polygons):
|
| 98 |
+
"""
|
| 99 |
+
Regularize polygons to make them more rectangular when appropriate.
|
| 100 |
+
|
| 101 |
+
Args:
|
| 102 |
+
polygons (list): List of shapely Polygon objects
|
| 103 |
+
|
| 104 |
+
Returns:
|
| 105 |
+
list: List of regularized polygons
|
| 106 |
+
"""
|
| 107 |
+
regularized = []
|
| 108 |
+
for polygon in polygons:
|
| 109 |
+
try:
|
| 110 |
+
# Check if the polygon is roughly rectangular using a simple heuristic
|
| 111 |
+
bounds = polygon.bounds
|
| 112 |
+
width = bounds[2] - bounds[0]
|
| 113 |
+
height = bounds[3] - bounds[1]
|
| 114 |
+
area_ratio = polygon.area / (width * height)
|
| 115 |
+
|
| 116 |
+
# If it's at least 80% similar to a rectangle, make it rectangular
|
| 117 |
+
if area_ratio > 0.8:
|
| 118 |
+
# Replace with the minimum bounding rectangle
|
| 119 |
+
minx, miny, maxx, maxy = polygon.bounds
|
| 120 |
+
regularized.append(Polygon([
|
| 121 |
+
(minx, miny), (maxx, miny),
|
| 122 |
+
(maxx, maxy), (minx, maxy), (minx, miny)
|
| 123 |
+
]))
|
| 124 |
+
else:
|
| 125 |
+
regularized.append(polygon)
|
| 126 |
+
except Exception as e:
|
| 127 |
+
logging.warning(f"Error regularizing polygon: {str(e)}")
|
| 128 |
+
regularized.append(polygon)
|
| 129 |
+
|
| 130 |
+
return regularized
|
| 131 |
+
|
| 132 |
+
def merge_nearby_polygons(polygons, distance_threshold=5.0):
|
| 133 |
+
"""
|
| 134 |
+
Merge polygons that are close to each other to reduce the polygon count.
|
| 135 |
+
|
| 136 |
+
Args:
|
| 137 |
+
polygons (list): List of shapely Polygon objects
|
| 138 |
+
distance_threshold (float): Distance threshold for merging
|
| 139 |
+
|
| 140 |
+
Returns:
|
| 141 |
+
list: List of merged polygons
|
| 142 |
+
"""
|
| 143 |
+
if not polygons:
|
| 144 |
+
return []
|
| 145 |
+
|
| 146 |
+
# Buffer polygons slightly to create overlaps for nearby polygons
|
| 147 |
+
buffered = [polygon.buffer(distance_threshold) for polygon in polygons]
|
| 148 |
+
|
| 149 |
+
# Union all buffered polygons
|
| 150 |
+
union = ops.unary_union(buffered)
|
| 151 |
+
|
| 152 |
+
# Convert the result to a list of polygons
|
| 153 |
+
if isinstance(union, Polygon):
|
| 154 |
+
return [union]
|
| 155 |
+
elif isinstance(union, MultiPolygon):
|
| 156 |
+
return list(union.geoms)
|
| 157 |
+
else:
|
| 158 |
+
return []
|
| 159 |
+
|
| 160 |
+
def convert_to_geojson_with_transform(polygons, image_height, image_width,
|
| 161 |
+
min_lat=None, min_lon=None, max_lat=None, max_lon=None):
|
| 162 |
+
"""
|
| 163 |
+
Convert polygons to GeoJSON with proper geographic transformation.
|
| 164 |
+
|
| 165 |
+
Args:
|
| 166 |
+
polygons (list): List of shapely Polygon objects
|
| 167 |
+
image_height (int): Height of the source image
|
| 168 |
+
image_width (int): Width of the source image
|
| 169 |
+
min_lat (float, optional): Minimum latitude for geographic bounds
|
| 170 |
+
min_lon (float, optional): Minimum longitude for geographic bounds
|
| 171 |
+
max_lat (float, optional): Maximum latitude for geographic bounds
|
| 172 |
+
max_lon (float, optional): Maximum longitude for geographic bounds
|
| 173 |
+
|
| 174 |
+
Returns:
|
| 175 |
+
dict: GeoJSON object
|
| 176 |
+
"""
|
| 177 |
+
# Set default geographic bounds if not provided
|
| 178 |
+
if None in (min_lon, min_lat, max_lon, max_lat):
|
| 179 |
+
# Default to somewhere neutral (center of Atlantic Ocean)
|
| 180 |
+
min_lon, min_lat = -30.0, 0.0
|
| 181 |
+
max_lon, max_lat = -20.0, 10.0
|
| 182 |
+
|
| 183 |
+
# Create a GeoJSON feature collection
|
| 184 |
+
geojson = {
|
| 185 |
+
"type": "FeatureCollection",
|
| 186 |
+
"features": []
|
| 187 |
+
}
|
| 188 |
+
|
| 189 |
+
# Function to transform pixel coordinates to geographic coordinates
|
| 190 |
+
def transform_point(x, y):
|
| 191 |
+
# Linear interpolation
|
| 192 |
+
lon = min_lon + (x / image_width) * (max_lon - min_lon)
|
| 193 |
+
# Invert y-axis for geographic coordinates
|
| 194 |
+
lat = max_lat - (y / image_height) * (max_lat - min_lat)
|
| 195 |
+
return lon, lat
|
| 196 |
+
|
| 197 |
+
# Convert each polygon to a GeoJSON feature
|
| 198 |
+
for i, polygon in enumerate(polygons):
|
| 199 |
+
# Extract coordinates
|
| 200 |
+
coords = list(polygon.exterior.coords)
|
| 201 |
+
|
| 202 |
+
# Transform coordinates to geographic space
|
| 203 |
+
geo_coords = [transform_point(x, y) for x, y in coords]
|
| 204 |
+
|
| 205 |
+
# Create GeoJSON geometry
|
| 206 |
+
geometry = {
|
| 207 |
+
"type": "Polygon",
|
| 208 |
+
"coordinates": [geo_coords]
|
| 209 |
+
}
|
| 210 |
+
|
| 211 |
+
# Create GeoJSON feature
|
| 212 |
+
feature = {
|
| 213 |
+
"type": "Feature",
|
| 214 |
+
"id": i + 1,
|
| 215 |
+
"properties": {
|
| 216 |
+
"name": f"Feature {i+1}"
|
| 217 |
+
},
|
| 218 |
+
"geometry": geometry
|
| 219 |
+
}
|
| 220 |
+
|
| 221 |
+
geojson["features"].append(feature)
|
| 222 |
+
|
| 223 |
+
return geojson
|
| 224 |
+
|
| 225 |
+
def process_image_to_geojson(image_path):
|
| 226 |
+
"""
|
| 227 |
+
Complete pipeline to convert an image to a simplified GeoJSON.
|
| 228 |
+
|
| 229 |
+
Args:
|
| 230 |
+
image_path (str): Path to the processed image
|
| 231 |
+
|
| 232 |
+
Returns:
|
| 233 |
+
dict: GeoJSON object
|
| 234 |
+
"""
|
| 235 |
+
try:
|
| 236 |
+
# Open image to get dimensions
|
| 237 |
+
img = Image.open(image_path)
|
| 238 |
+
width, height = img.size
|
| 239 |
+
|
| 240 |
+
# Extract contours from the image
|
| 241 |
+
polygons = extract_contours(image_path)
|
| 242 |
+
logging.info(f"Extracted {len(polygons)} initial polygons")
|
| 243 |
+
|
| 244 |
+
if not polygons:
|
| 245 |
+
logging.warning("No polygons found in the image")
|
| 246 |
+
return {"type": "FeatureCollection", "features": []}
|
| 247 |
+
|
| 248 |
+
# Simplify polygons to reduce vertex count
|
| 249 |
+
polygons = simplify_polygons(polygons, tolerance=2.0)
|
| 250 |
+
logging.info(f"After simplification: {len(polygons)} polygons")
|
| 251 |
+
|
| 252 |
+
# Regularize appropriate polygons
|
| 253 |
+
polygons = regularize_polygons(polygons)
|
| 254 |
+
|
| 255 |
+
# Merge nearby polygons to reduce count
|
| 256 |
+
polygons = merge_nearby_polygons(polygons)
|
| 257 |
+
logging.info(f"After merging: {len(polygons)} polygons")
|
| 258 |
+
|
| 259 |
+
# Convert to GeoJSON with proper transformation
|
| 260 |
+
geojson = convert_to_geojson_with_transform(
|
| 261 |
+
polygons, height, width,
|
| 262 |
+
# Use generic bounds as we don't have real georeferencing
|
| 263 |
+
min_lat=40.0, min_lon=-75.0,
|
| 264 |
+
max_lat=42.0, max_lon=-73.0
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
return geojson
|
| 268 |
+
|
| 269 |
+
except Exception as e:
|
| 270 |
+
logging.error(f"Error in GeoJSON processing: {str(e)}")
|
| 271 |
+
return {"type": "FeatureCollection", "features": []}
|
uv.lock
CHANGED
|
@@ -412,6 +412,7 @@ dependencies = [
|
|
| 412 |
{ name = "opencv-python" },
|
| 413 |
{ name = "pillow" },
|
| 414 |
{ name = "psycopg2-binary" },
|
|
|
|
| 415 |
{ name = "werkzeug" },
|
| 416 |
]
|
| 417 |
|
|
@@ -425,9 +426,53 @@ requires-dist = [
|
|
| 425 |
{ name = "opencv-python", specifier = ">=4.11.0.86" },
|
| 426 |
{ name = "pillow", specifier = ">=11.2.1" },
|
| 427 |
{ name = "psycopg2-binary", specifier = ">=2.9.10" },
|
|
|
|
| 428 |
{ name = "werkzeug", specifier = ">=3.1.3" },
|
| 429 |
]
|
| 430 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 431 |
[[package]]
|
| 432 |
name = "sqlalchemy"
|
| 433 |
version = "2.0.40"
|
|
|
|
| 412 |
{ name = "opencv-python" },
|
| 413 |
{ name = "pillow" },
|
| 414 |
{ name = "psycopg2-binary" },
|
| 415 |
+
{ name = "shapely" },
|
| 416 |
{ name = "werkzeug" },
|
| 417 |
]
|
| 418 |
|
|
|
|
| 426 |
{ name = "opencv-python", specifier = ">=4.11.0.86" },
|
| 427 |
{ name = "pillow", specifier = ">=11.2.1" },
|
| 428 |
{ name = "psycopg2-binary", specifier = ">=2.9.10" },
|
| 429 |
+
{ name = "shapely", specifier = ">=2.1.0" },
|
| 430 |
{ name = "werkzeug", specifier = ">=3.1.3" },
|
| 431 |
]
|
| 432 |
|
| 433 |
+
[[package]]
|
| 434 |
+
name = "shapely"
|
| 435 |
+
version = "2.1.0"
|
| 436 |
+
source = { registry = "https://pypi.org/simple" }
|
| 437 |
+
dependencies = [
|
| 438 |
+
{ name = "numpy" },
|
| 439 |
+
]
|
| 440 |
+
sdist = { url = "https://files.pythonhosted.org/packages/fb/fe/3b0d2f828ffaceadcdcb51b75b9c62d98e62dd95ce575278de35f24a1c20/shapely-2.1.0.tar.gz", hash = "sha256:2cbe90e86fa8fc3ca8af6ffb00a77b246b918c7cf28677b7c21489b678f6b02e", size = 313617 }
|
| 441 |
+
wheels = [
|
| 442 |
+
{ url = "https://files.pythonhosted.org/packages/1c/37/ae448f06f363ff3dfe4bae890abd842c4e3e9edaf01245dbc9b97008c9e6/shapely-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c8323031ef7c1bdda7a92d5ddbc7b6b62702e73ba37e9a8ccc8da99ec2c0b87c", size = 1820974 },
|
| 443 |
+
{ url = "https://files.pythonhosted.org/packages/78/da/ea2a898e93c6953c5eef353a0e1781a0013a1352f2b90aa9ab0b800e0c75/shapely-2.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4da7c6cd748d86ec6aace99ad17129d30954ccf5e73e9911cdb5f0fa9658b4f8", size = 1624137 },
|
| 444 |
+
{ url = "https://files.pythonhosted.org/packages/64/4a/f903f82f0fabcd3f43ea2e8132cabda079119247330a9fe58018c39c4e22/shapely-2.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f0cdf85ff80831137067e7a237085a3ee72c225dba1b30beef87f7d396cf02b", size = 2957161 },
|
| 445 |
+
{ url = "https://files.pythonhosted.org/packages/92/07/3e2738c542d73182066196b8ce99388cb537d19e300e428d50b1537e3b21/shapely-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:41f2be5d79aac39886f23000727cf02001aef3af8810176c29ee12cdc3ef3a50", size = 3078530 },
|
| 446 |
+
{ url = "https://files.pythonhosted.org/packages/82/08/32210e63d8f8af9142d37c2433ece4846862cdac91a0fe66f040780a71bd/shapely-2.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:21a4515009f56d7a159cf5c2554264e82f56405b4721f9a422cb397237c5dca8", size = 3902208 },
|
| 447 |
+
{ url = "https://files.pythonhosted.org/packages/19/0e/0abb5225f8a32fbdb615476637038a7d2db40c0af46d1bb3a08b869bee39/shapely-2.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:15cebc323cec2cb6b2eaa310fdfc621f6dbbfaf6bde336d13838fcea76c885a9", size = 4082863 },
|
| 448 |
+
{ url = "https://files.pythonhosted.org/packages/f8/1b/7cd816fd388108c872ab7e2930180b02d0c34891213f361e4a66e5e032f2/shapely-2.1.0-cp311-cp311-win32.whl", hash = "sha256:cad51b7a5c8f82f5640472944a74f0f239123dde9a63042b3c5ea311739b7d20", size = 1527488 },
|
| 449 |
+
{ url = "https://files.pythonhosted.org/packages/fd/28/7bb5b1944d4002d4b2f967762018500381c3b532f98e456bbda40c3ded68/shapely-2.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:d4005309dde8658e287ad9c435c81877f6a95a9419b932fa7a1f34b120f270ae", size = 1708311 },
|
| 450 |
+
{ url = "https://files.pythonhosted.org/packages/4e/d1/6a9371ec39d3ef08e13225594e6c55b045209629afd9e6d403204507c2a8/shapely-2.1.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:53e7ee8bd8609cf12ee6dce01ea5affe676976cf7049315751d53d8db6d2b4b2", size = 1830732 },
|
| 451 |
+
{ url = "https://files.pythonhosted.org/packages/32/87/799e3e48be7ce848c08509b94d2180f4ddb02e846e3c62d0af33da4d78d3/shapely-2.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3cab20b665d26dbec0b380e15749bea720885a481fa7b1eedc88195d4a98cfa4", size = 1638404 },
|
| 452 |
+
{ url = "https://files.pythonhosted.org/packages/85/00/6665d77f9dd09478ab0993b8bc31668aec4fd3e5f1ddd1b28dd5830e47be/shapely-2.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f4a38b39a09340273c3c92b3b9a374272a12cc7e468aeeea22c1c46217a03e5c", size = 2945316 },
|
| 453 |
+
{ url = "https://files.pythonhosted.org/packages/34/49/738e07d10bbc67cae0dcfe5a484c6e518a517f4f90550dda2adf3a78b9f2/shapely-2.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:edaec656bdd9b71278b98e6f77c464b1c3b2daa9eace78012ff0f0b4b5b15b04", size = 3063099 },
|
| 454 |
+
{ url = "https://files.pythonhosted.org/packages/88/b8/138098674559362ab29f152bff3b6630de423378fbb0324812742433a4ef/shapely-2.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:c8a732ddd9b25e7a54aa748e7df8fd704e23e5d5d35b7d376d80bffbfc376d04", size = 3887873 },
|
| 455 |
+
{ url = "https://files.pythonhosted.org/packages/67/a8/fdae7c2db009244991d86f4d2ca09d2f5ccc9d41c312c3b1ee1404dc55da/shapely-2.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:9c93693ad8adfdc9138a5a2d42da02da94f728dd2e82d2f0f442f10e25027f5f", size = 4067004 },
|
| 456 |
+
{ url = "https://files.pythonhosted.org/packages/ed/78/17e17d91b489019379df3ee1afc4bd39787b232aaa1d540f7d376f0280b7/shapely-2.1.0-cp312-cp312-win32.whl", hash = "sha256:d8ac6604eefe807e71a908524de23a37920133a1729fe3a4dfe0ed82c044cbf4", size = 1527366 },
|
| 457 |
+
{ url = "https://files.pythonhosted.org/packages/b8/bd/9249bd6dda948441e25e4fb14cbbb5205146b0fff12c66b19331f1ff2141/shapely-2.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:f4f47e631aa4f9ec5576eac546eb3f38802e2f82aeb0552f9612cb9a14ece1db", size = 1708265 },
|
| 458 |
+
{ url = "https://files.pythonhosted.org/packages/8d/77/4e368704b2193e74498473db4461d697cc6083c96f8039367e59009d78bd/shapely-2.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:b64423295b563f43a043eb786e7a03200ebe68698e36d2b4b1c39f31dfb50dfb", size = 1830029 },
|
| 459 |
+
{ url = "https://files.pythonhosted.org/packages/71/3c/d888597bda680e4de987316b05ca9db07416fa29523beff64f846503302f/shapely-2.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1b5578f45adc25b235b22d1ccb9a0348c8dc36f31983e57ea129a88f96f7b870", size = 1637999 },
|
| 460 |
+
{ url = "https://files.pythonhosted.org/packages/03/8d/ee0e23b7ef88fba353c63a81f1f329c77f5703835db7b165e7c0b8b7f839/shapely-2.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d1a7e83d383b27f02b684e50ab7f34e511c92e33b6ca164a6a9065705dd64bcb", size = 2929348 },
|
| 461 |
+
{ url = "https://files.pythonhosted.org/packages/d1/a7/5c9cb413e4e2ce52c16be717e94abd40ce91b1f8974624d5d56154c5d40b/shapely-2.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:942031eb4d8f7b3b22f43ba42c09c7aa3d843aa10d5cc1619fe816e923b66e55", size = 3048973 },
|
| 462 |
+
{ url = "https://files.pythonhosted.org/packages/84/23/45b90c0bd2157b238490ca56ef2eedf959d3514c7d05475f497a2c88b6d9/shapely-2.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:d2843c456a2e5627ee6271800f07277c0d2652fb287bf66464571a057dbc00b3", size = 3873148 },
|
| 463 |
+
{ url = "https://files.pythonhosted.org/packages/c0/bc/ed7d5d37f5395166042576f0c55a12d7e56102799464ba7ea3a72a38c769/shapely-2.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:8c4b17469b7f39a5e6a7cfea79f38ae08a275427f41fe8b48c372e1449147908", size = 4052655 },
|
| 464 |
+
{ url = "https://files.pythonhosted.org/packages/c0/8f/a1dafbb10d20d1c569f2db3fb1235488f624dafe8469e8ce65356800ba31/shapely-2.1.0-cp313-cp313-win32.whl", hash = "sha256:30e967abd08fce49513d4187c01b19f139084019f33bec0673e8dbeb557c45e4", size = 1526600 },
|
| 465 |
+
{ url = "https://files.pythonhosted.org/packages/e3/f0/9f8cdf2258d7aed742459cea51c70d184de92f5d2d6f5f7f1ded90a18c31/shapely-2.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:1dc8d4364483a14aba4c844b7bd16a6fa3728887e2c33dfa1afa34a3cf4d08a5", size = 1707115 },
|
| 466 |
+
{ url = "https://files.pythonhosted.org/packages/75/ed/32952df461753a65b3e5d24c8efb361d3a80aafaef0b70d419063f6f2c11/shapely-2.1.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:673e073fea099d1c82f666fb7ab0a00a77eff2999130a69357ce11941260d855", size = 1824847 },
|
| 467 |
+
{ url = "https://files.pythonhosted.org/packages/ff/b9/2284de512af30b02f93ddcdd2e5c79834a3cf47fa3ca11b0f74396feb046/shapely-2.1.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:6d1513f915a56de67659fe2047c1ad5ff0f8cbff3519d1e74fced69c9cb0e7da", size = 1631035 },
|
| 468 |
+
{ url = "https://files.pythonhosted.org/packages/35/16/a59f252a7e736b73008f10d0950ffeeb0d5953be7c0bdffd39a02a6ba310/shapely-2.1.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d6a7043178890b9e028d80496ff4c79dc7629bff4d78a2f25323b661756bab8", size = 2968639 },
|
| 469 |
+
{ url = "https://files.pythonhosted.org/packages/a5/0a/6a20eca7b0092cfa243117e8e145a58631a4833a0a519ec9b445172e83a0/shapely-2.1.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb638378dc3d76f7e85b67d7e2bb1366811912430ac9247ac00c127c2b444cdc", size = 3055713 },
|
| 470 |
+
{ url = "https://files.pythonhosted.org/packages/fb/44/eeb0c7583b1453d1cf7a319a1d738e08f98a5dc993fa1ef3c372983e4cb5/shapely-2.1.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:737124e87d91d616acf9a911f74ac55e05db02a43a6a7245b3d663817b876055", size = 3890478 },
|
| 471 |
+
{ url = "https://files.pythonhosted.org/packages/5d/6e/37ff3c6af1d408cacb0a7d7bfea7b8ab163a5486e35acb08997eae9d8756/shapely-2.1.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:8e6c229e7bb87aae5df82fa00b6718987a43ec168cc5affe095cca59d233f314", size = 4036148 },
|
| 472 |
+
{ url = "https://files.pythonhosted.org/packages/c8/6a/8c0b7de3aeb5014a23f06c5e9d3c7852ebcf0d6b00fe660b93261e310e24/shapely-2.1.0-cp313-cp313t-win32.whl", hash = "sha256:a9580bda119b1f42f955aa8e52382d5c73f7957e0203bc0c0c60084846f3db94", size = 1535993 },
|
| 473 |
+
{ url = "https://files.pythonhosted.org/packages/a8/91/ae80359a58409d52e4d62c7eacc7eb3ddee4b9135f1db884b6a43cf2e174/shapely-2.1.0-cp313-cp313t-win_amd64.whl", hash = "sha256:e8ff4e5cfd799ba5b6f37b5d5527dbd85b4a47c65b6d459a03d0962d2a9d4d10", size = 1717777 },
|
| 474 |
+
]
|
| 475 |
+
|
| 476 |
[[package]]
|
| 477 |
name = "sqlalchemy"
|
| 478 |
version = "2.0.40"
|