PerryCheng614's picture
update streaming logic
97eae29
raw
history blame
4.22 kB
import gradio as gr
import requests
import json
import os
import time
API_KEY = os.getenv("API_KEY")
if not API_KEY:
raise ValueError("API_KEY environment variable must be set")
def process_image_stream(image_path, prompt, max_tokens=512):
"""
Process image with streaming response via HTTP
"""
if not image_path:
yield "Please upload an image first."
return
try:
# Read and prepare image file
with open(image_path, 'rb') as img_file:
files = {
'image': ('image.jpg', img_file, 'image/jpeg')
}
data = {
'prompt': prompt,
'task': 'instruct',
'max_tokens': max_tokens
}
headers = {
'X-API-Key': API_KEY
}
# Make streaming request
response = requests.post(
'https://nexa-omni.nexa4ai.com/process-image/',
files=files,
data=data,
headers=headers,
stream=True
)
if response.status_code != 200:
yield f"Error: Server returned status code {response.status_code}"
return
# Initialize response and token counter
response_text = ""
token_count = 0
# Process the streaming response
for line in response.iter_lines():
if line:
line = line.decode('utf-8')
if line.startswith('data: '):
try:
data = json.loads(line[6:]) # Skip 'data: ' prefix
if data["status"] == "generating":
# Skip first three tokens if they match specific patterns
if token_count < 3 and data["token"] in [" ", " \n", "\n", "<|im_start|>", "assistant"]:
token_count += 1
continue
response_text += data["token"]
# Add explicit Gradio update
gr.update(value=response_text)
yield response_text
time.sleep(0.01) # Small delay to ensure updates are visible
elif data["status"] == "complete":
break
elif data["status"] == "error":
yield f"Error: {data['error']}"
break
except json.JSONDecodeError:
continue
except Exception as e:
yield f"Error processing request: {str(e)}"
# Create Gradio interface
demo = gr.Interface(
fn=process_image_stream,
inputs=[
gr.Image(type="filepath", label="Upload Image"),
gr.Textbox(
label="Question",
placeholder="Ask a question about the image...",
value="Describe this image"
),
gr.Slider(
minimum=50,
maximum=200,
value=200,
step=1,
label="Max Tokens"
)
],
outputs=gr.Textbox(label="Response", interactive=False),
title="NEXA OmniVLM-968M",
description=f"""
Model Repo: <a href="https://huggingface.co/NexaAIDev/OmniVLM-968M">NexaAIDev/OmniVLM-968M</a>
*Model updated on Nov 21, 2024\n
Upload an image and ask questions about it. The model will analyze the image and provide detailed answers to your queries.
""",
examples=[
["example_images/example_1.jpg", "What kind of cat is this?", 128],
["example_images/example_2.jpg", "What color is this dress? ", 128],
["example_images/example_3.jpg", "What is this image about?", 128],
]
)
if __name__ == "__main__":
# Configure the queue for better streaming performance
demo.queue(
max_size=20,
).launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
max_threads=1
)