Spaces:
Running
Running
import gradio as gr | |
import requests | |
import json | |
import os | |
import time | |
API_KEY = os.getenv("API_KEY") | |
if not API_KEY: | |
raise ValueError("API_KEY environment variable must be set") | |
def process_image_stream(image_path, prompt, max_tokens=512): | |
""" | |
Process image with streaming response via HTTP | |
""" | |
if not image_path: | |
yield "Please upload an image first." | |
return | |
try: | |
# Read and prepare image file | |
with open(image_path, 'rb') as img_file: | |
files = { | |
'image': ('image.jpg', img_file, 'image/jpeg') | |
} | |
data = { | |
'prompt': prompt, | |
'task': 'instruct', | |
'max_tokens': max_tokens | |
} | |
headers = { | |
'X-API-Key': API_KEY | |
} | |
# Make streaming request | |
response = requests.post( | |
'https://nexa-omni.nexa4ai.com/process-image/', | |
files=files, | |
data=data, | |
headers=headers, | |
stream=True | |
) | |
if response.status_code != 200: | |
yield f"Error: Server returned status code {response.status_code}" | |
return | |
# Initialize response and token counter | |
response_text = "" | |
token_count = 0 | |
# Process the streaming response | |
for line in response.iter_lines(): | |
if line: | |
line = line.decode('utf-8') | |
if line.startswith('data: '): | |
try: | |
data = json.loads(line[6:]) # Skip 'data: ' prefix | |
if data["status"] == "generating": | |
# Skip first three tokens if they match specific patterns | |
if token_count < 3 and data["token"] in [" ", " \n", "\n", "<|im_start|>", "assistant"]: | |
token_count += 1 | |
continue | |
response_text += data["token"] | |
# Add explicit Gradio update | |
gr.update(value=response_text) | |
yield response_text | |
time.sleep(0.01) # Small delay to ensure updates are visible | |
elif data["status"] == "complete": | |
break | |
elif data["status"] == "error": | |
yield f"Error: {data['error']}" | |
break | |
except json.JSONDecodeError: | |
continue | |
except Exception as e: | |
yield f"Error processing request: {str(e)}" | |
# Create Gradio interface | |
demo = gr.Interface( | |
fn=process_image_stream, | |
inputs=[ | |
gr.Image(type="filepath", label="Upload Image"), | |
gr.Textbox( | |
label="Question", | |
placeholder="Ask a question about the image...", | |
value="Describe this image" | |
), | |
gr.Slider( | |
minimum=50, | |
maximum=200, | |
value=200, | |
step=1, | |
label="Max Tokens" | |
) | |
], | |
outputs=gr.Textbox(label="Response", interactive=False), | |
title="NEXA OmniVLM-968M", | |
description=f""" | |
Model Repo: <a href="https://huggingface.co/NexaAIDev/OmniVLM-968M">NexaAIDev/OmniVLM-968M</a> | |
*Model updated on Nov 21, 2024\n | |
Upload an image and ask questions about it. The model will analyze the image and provide detailed answers to your queries. | |
""", | |
examples=[ | |
["example_images/example_1.jpg", "What kind of cat is this?", 128], | |
["example_images/example_2.jpg", "What color is this dress? ", 128], | |
["example_images/example_3.jpg", "What is this image about?", 128], | |
] | |
) | |
if __name__ == "__main__": | |
# Configure the queue for better streaming performance | |
demo.queue( | |
max_size=20, | |
).launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=True, | |
max_threads=1 | |
) |