Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Fine-tuning the library models for sequence to sequence. | |
""" | |
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments. | |
import logging | |
import os | |
import sys | |
import json | |
import numpy as np | |
from datasets import load_dataset | |
import jieba | |
from rouge_chinese import Rouge | |
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction | |
import torch | |
import transformers | |
from transformers import ( | |
AutoConfig, | |
AutoModel, | |
AutoTokenizer, | |
AutoTokenizer, | |
DataCollatorForSeq2Seq, | |
HfArgumentParser, | |
Seq2SeqTrainingArguments, | |
set_seed, | |
) | |
from trainer_seq2seq import Seq2SeqTrainer | |
from arguments import ModelArguments, DataTrainingArguments | |
logger = logging.getLogger(__name__) | |
def main(): | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
# If we pass only one argument to the script and it's the path to a json file, | |
# let's parse it to get our arguments. | |
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
else: | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
# Setup logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
handlers=[logging.StreamHandler(sys.stdout)], | |
) | |
if training_args.should_log: | |
# The default of training_args.log_level is passive, so we set log level at info here to have that default. | |
transformers.utils.logging.set_verbosity_info() | |
log_level = training_args.get_process_log_level() | |
logger.setLevel(log_level) | |
# datasets.utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.enable_default_handler() | |
transformers.utils.logging.enable_explicit_format() | |
# Log on each process the small summary: | |
logger.warning( | |
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" | |
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" | |
) | |
logger.info(f"Training/evaluation parameters {training_args}") | |
# Set seed before initializing model. | |
set_seed(training_args.seed) | |
# Load dataset | |
data_files = {} | |
if data_args.train_file is not None: | |
data_files["train"] = data_args.train_file | |
extension = data_args.train_file.split(".")[-1] | |
if data_args.validation_file is not None: | |
data_files["validation"] = data_args.validation_file | |
extension = data_args.validation_file.split(".")[-1] | |
if data_args.test_file is not None: | |
data_files["test"] = data_args.test_file | |
extension = data_args.test_file.split(".")[-1] | |
raw_datasets = load_dataset( | |
extension, | |
data_files=data_files, | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
print('---------------------------------------------------') | |
print("raw_datasets:", raw_datasets) | |
# Load pretrained model and tokenizer | |
config = AutoConfig.from_pretrained(model_args.model_name_or_path, trust_remote_code=True) | |
config.pre_seq_len = model_args.pre_seq_len | |
config.prefix_projection = model_args.prefix_projection | |
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, trust_remote_code=True) | |
if model_args.ptuning_checkpoint is not None: | |
# Evaluation | |
# Loading extra state dict of prefix encoder | |
model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True) | |
prefix_state_dict = torch.load(os.path.join(model_args.ptuning_checkpoint, "pytorch_model.bin")) | |
new_prefix_state_dict = {} | |
for k, v in prefix_state_dict.items(): | |
if k.startswith("transformer.prefix_encoder."): | |
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v | |
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict) | |
else: | |
model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True) | |
if model_args.quantization_bit is not None: | |
print(f"Quantized to {model_args.quantization_bit} bit") | |
try: | |
# kernel_file = "{}\\quantization_kernels.so".format(model_args.model_name_or_path) | |
kernel_file = "{}/quantization_kernels.so".format(model_args.model_name_or_path) | |
model = model.quantize(bits=model_args.quantization_bit, kernel_file=kernel_file) | |
except: | |
model = model.quantize(bits=model_args.quantization_bit) | |
if model_args.pre_seq_len is not None: | |
# P-tuning v2 | |
model = model.half() | |
model.transformer.prefix_encoder.float() | |
else: | |
# Finetune | |
model = model.float() | |
prefix = data_args.source_prefix if data_args.source_prefix is not None else "" | |
# Preprocessing the datasets. | |
# We need to tokenize inputs and targets. | |
if training_args.do_train: | |
column_names = raw_datasets["train"].column_names | |
elif training_args.do_eval: | |
column_names = raw_datasets["validation"].column_names | |
elif training_args.do_predict: | |
column_names = raw_datasets["test"].column_names | |
else: | |
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") | |
return | |
# Get the column names for input/target. | |
prompt_column = data_args.prompt_column | |
response_column = data_args.response_column | |
history_column = data_args.history_column | |
# Temporarily set max_target_length for training. | |
max_target_length = data_args.max_target_length | |
def preprocess_function_eval(examples): | |
inputs, targets = [], [] | |
for i in range(len(examples[prompt_column])): | |
if examples[prompt_column][i] and examples[response_column][i]: | |
query = examples[prompt_column][i] | |
if history_column is None or len(examples[history_column][i]) == 0: | |
prompt = query | |
else: | |
prompt = "" | |
history = examples[history_column][i] | |
for turn_idx, (old_query, response) in enumerate(history): | |
prompt += "[Round {}]\n问:{}\n答:{}\n".format(turn_idx, old_query, response) | |
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query) | |
inputs.append(prompt) | |
targets.append(examples[response_column][i]) | |
inputs = [prefix + inp for inp in inputs] | |
model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, truncation=True, padding=True) | |
labels = tokenizer(text_target=targets, max_length=max_target_length, truncation=True) | |
if data_args.ignore_pad_token_for_loss: | |
labels["input_ids"] = [ | |
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"] | |
] | |
model_inputs["labels"] = labels["input_ids"] | |
return model_inputs | |
def preprocess_function_train(examples): | |
max_seq_length = data_args.max_source_length + data_args.max_target_length | |
model_inputs = { | |
"input_ids": [], | |
"labels": [], | |
} | |
for i in range(len(examples[prompt_column])): | |
if examples[prompt_column][i] and examples[response_column][i]: | |
query, answer = examples[prompt_column][i], examples[response_column][i] | |
if history_column is None: | |
prompt = query | |
else: | |
prompt = "" | |
history = examples[history_column][i] | |
for turn_idx, (old_query, response) in enumerate(history): | |
prompt += "[Round {}]\n问:{}\n答:{}\n".format(turn_idx, old_query, response) | |
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query) | |
prompt = prefix + prompt | |
a_ids = tokenizer.encode(text=prompt, add_special_tokens=False) | |
b_ids = tokenizer.encode(text=answer, add_special_tokens=False) | |
if len(a_ids) > data_args.max_source_length - 1: | |
a_ids = a_ids[: data_args.max_source_length - 1] | |
if len(b_ids) > data_args.max_target_length - 2: | |
b_ids = b_ids[: data_args.max_target_length - 2] | |
input_ids = tokenizer.build_inputs_with_special_tokens(a_ids, b_ids) | |
context_length = input_ids.index(tokenizer.bos_token_id) | |
mask_position = context_length - 1 | |
labels = [-100] * context_length + input_ids[mask_position+1:] | |
pad_len = max_seq_length - len(input_ids) | |
input_ids = input_ids + [tokenizer.pad_token_id] * pad_len | |
labels = labels + [tokenizer.pad_token_id] * pad_len | |
if data_args.ignore_pad_token_for_loss: | |
labels = [(l if l != tokenizer.pad_token_id else -100) for l in labels] | |
model_inputs["input_ids"].append(input_ids) | |
model_inputs["labels"].append(labels) | |
return model_inputs | |
def print_dataset_example(example): | |
print("input_ids",example["input_ids"]) | |
print("inputs", tokenizer.decode(example["input_ids"])) | |
print("label_ids", example["labels"]) | |
print("labels", tokenizer.decode(example["labels"])) | |
if training_args.do_train: | |
if "train" not in raw_datasets: | |
raise ValueError("--do_train requires a train dataset") | |
train_dataset = raw_datasets["train"] | |
if data_args.max_train_samples is not None: | |
max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
train_dataset = train_dataset.select(range(max_train_samples)) | |
with training_args.main_process_first(desc="train dataset map pre-processing"): | |
train_dataset = train_dataset.map( | |
preprocess_function_train, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
remove_columns=column_names, | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc="Running tokenizer on train dataset", | |
) | |
print_dataset_example(train_dataset[0]) | |
if training_args.do_eval: | |
max_target_length = data_args.val_max_target_length | |
if "validation" not in raw_datasets: | |
raise ValueError("--do_eval requires a validation dataset") | |
eval_dataset = raw_datasets["validation"] | |
if data_args.max_eval_samples is not None: | |
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) | |
eval_dataset = eval_dataset.select(range(max_eval_samples)) | |
with training_args.main_process_first(desc="validation dataset map pre-processing"): | |
eval_dataset = eval_dataset.map( | |
preprocess_function_eval, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
remove_columns=column_names, | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc="Running tokenizer on validation dataset", | |
) | |
print_dataset_example(eval_dataset[0]) | |
if training_args.do_predict: | |
max_target_length = data_args.val_max_target_length | |
if "test" not in raw_datasets: | |
raise ValueError("--do_predict requires a test dataset") | |
predict_dataset = raw_datasets["test"] | |
if data_args.max_predict_samples is not None: | |
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) | |
predict_dataset = predict_dataset.select(range(max_predict_samples)) | |
with training_args.main_process_first(desc="prediction dataset map pre-processing"): | |
predict_dataset = predict_dataset.map( | |
preprocess_function_eval, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
remove_columns=column_names, | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc="Running tokenizer on prediction dataset", | |
) | |
print_dataset_example(predict_dataset[0]) | |
# Data collator | |
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id | |
data_collator = DataCollatorForSeq2Seq( | |
tokenizer, | |
model=model, | |
label_pad_token_id=label_pad_token_id, | |
pad_to_multiple_of=None, | |
padding=False | |
) | |
# Metric | |
def compute_metrics(eval_preds): | |
preds, labels = eval_preds | |
if isinstance(preds, tuple): | |
preds = preds[0] | |
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) | |
if data_args.ignore_pad_token_for_loss: | |
# Replace -100 in the labels as we can't decode them. | |
labels = np.where(labels != -100, labels, tokenizer.pad_token_id) | |
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) | |
score_dict = { | |
"rouge-1": [], | |
"rouge-2": [], | |
"rouge-l": [], | |
"bleu-4": [] | |
} | |
for pred, label in zip(decoded_preds, decoded_labels): | |
hypothesis = list(jieba.cut(pred)) | |
reference = list(jieba.cut(label)) | |
rouge = Rouge() | |
scores = rouge.get_scores(' '.join(hypothesis) , ' '.join(reference)) | |
result = scores[0] | |
for k, v in result.items(): | |
score_dict[k].append(round(v["f"] * 100, 4)) | |
bleu_score = sentence_bleu([list(label)], list(pred), smoothing_function=SmoothingFunction().method3) | |
score_dict["bleu-4"].append(round(bleu_score * 100, 4)) | |
for k, v in score_dict.items(): | |
score_dict[k] = float(np.mean(v)) | |
return score_dict | |
# Override the decoding parameters of Seq2SeqTrainer | |
training_args.generation_max_length = ( | |
training_args.generation_max_length | |
if training_args.generation_max_length is not None | |
else data_args.val_max_target_length | |
) | |
training_args.generation_num_beams = ( | |
data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams | |
) | |
# Initialize our Trainer | |
trainer = Seq2SeqTrainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset if training_args.do_train else None, | |
eval_dataset=eval_dataset if training_args.do_eval else None, | |
tokenizer=tokenizer, | |
data_collator=data_collator, | |
compute_metrics=compute_metrics if training_args.predict_with_generate else None, | |
save_prefixencoder=model_args.pre_seq_len is not None | |
) | |
# Training | |
if training_args.do_train: | |
checkpoint = None | |
if training_args.resume_from_checkpoint is not None: | |
checkpoint = training_args.resume_from_checkpoint | |
# elif last_checkpoint is not None: | |
# checkpoint = last_checkpoint | |
model.gradient_checkpointing_enable() | |
model.enable_input_require_grads() | |
train_result = trainer.train(resume_from_checkpoint=checkpoint) | |
# trainer.save_model() # Saves the tokenizer too for easy upload | |
metrics = train_result.metrics | |
max_train_samples = ( | |
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) | |
) | |
metrics["train_samples"] = min(max_train_samples, len(train_dataset)) | |
trainer.log_metrics("train", metrics) | |
trainer.save_metrics("train", metrics) | |
trainer.save_state() | |
# Evaluation | |
results = {} | |
if training_args.do_eval: | |
logger.info("*** Evaluate ***") | |
metrics = trainer.evaluate(metric_key_prefix="eval", do_sample=True, top_p=0.7, max_length=512, temperature=0.95) | |
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) | |
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) | |
trainer.log_metrics("eval", metrics) | |
trainer.save_metrics("eval", metrics) | |
if training_args.do_predict: | |
logger.info("*** Predict ***") | |
predict_results = trainer.predict(predict_dataset, metric_key_prefix="predict", max_length=512, do_sample=True, top_p=0.7, temperature=0.95) | |
metrics = predict_results.metrics | |
max_predict_samples = ( | |
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset) | |
) | |
metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset)) | |
trainer.log_metrics("predict", metrics) | |
trainer.save_metrics("predict", metrics) | |
if trainer.is_world_process_zero(): | |
if training_args.predict_with_generate: | |
predictions = tokenizer.batch_decode( | |
predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True | |
) | |
predictions = [pred.strip() for pred in predictions] | |
labels = tokenizer.batch_decode( | |
predict_results.label_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True | |
) | |
labels = [label.strip() for label in labels] | |
output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt") | |
with open(output_prediction_file, "w", encoding="utf-8") as writer: | |
for p, l in zip(predictions, labels): | |
res = json.dumps({"labels": l, "predict": p}, ensure_ascii=False) | |
writer.write(f"{res}\n") | |
return results | |
def _mp_fn(index): | |
# For xla_spawn (TPUs) | |
main() | |
if __name__ == "__main__": | |
main() | |