Spaces:
Runtime error
Runtime error
import os | |
from typing import Dict, Tuple, Union, Optional | |
from torch.nn import Module | |
from transformers import AutoModel | |
def auto_configure_device_map(num_gpus: int) -> Dict[str, int]: | |
# transformer.word_embeddings 占用1层 | |
# transformer.final_layernorm 和 lm_head 占用1层 | |
# transformer.layers 占用 28 层 | |
# 总共30层分配到num_gpus张卡上 | |
num_trans_layers = 28 | |
per_gpu_layers = 30 / num_gpus | |
# bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError | |
# windows下 model.device 会被设置成 transformer.word_embeddings.device | |
# linux下 model.device 会被设置成 lm_head.device | |
# 在调用chat或者stream_chat时,input_ids会被放到model.device上 | |
# 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError | |
# 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上 | |
device_map = {'transformer.word_embeddings': 0, | |
'transformer.final_layernorm': 0, 'lm_head': 0} | |
used = 2 | |
gpu_target = 0 | |
for i in range(num_trans_layers): | |
if used >= per_gpu_layers: | |
gpu_target += 1 | |
used = 0 | |
assert gpu_target < num_gpus | |
device_map[f'transformer.layers.{i}'] = gpu_target | |
used += 1 | |
return device_map | |
def load_model_on_gpus(checkpoint_path: Union[str, os.PathLike], num_gpus: int = 2, | |
device_map: Optional[Dict[str, int]] = None, **kwargs) -> Module: | |
if num_gpus < 2 and device_map is None: | |
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half().cuda() | |
else: | |
from accelerate import dispatch_model | |
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half() | |
if device_map is None: | |
device_map = auto_configure_device_map(num_gpus) | |
model = dispatch_model(model, device_map=device_map) | |
return model | |