chatglm-6b-int4 / app.py
NewBreaker's picture
add app.py int4 cpu model
310cea3
raw
history blame
1.58 kB
from transformers import AutoTokenizer, AutoModel
import gradio as gr
# tokenizer = AutoTokenizer.from_pretrained(".\\models\\chatglm-6b-int4", trust_remote_code=True, revision="")
# model = AutoModel.from_pretrained(".\\models\\chatglm-6b-int4", trust_remote_code=True, revision="").half().cuda()
# chatglm-6b-int4 cuda,本地可以运行成功
# tokenizer = AutoTokenizer.from_pretrained(".\\models\\chatglm-6b-int4", trust_remote_code=True, revision="")
# model = AutoModel.from_pretrained(".\\models\\chatglm-6b-int4", trust_remote_code=True, revision="").half().cuda()
# chatglm-6b-int4 CPU,
tokenizer = AutoTokenizer.from_pretrained(".\\models\\chatglm-6b-int4", trust_remote_code=True, revision="")
model = AutoModel.from_pretrained(".\\models\\chatglm-6b-int4", trust_remote_code=True, revision="").float()
# chatglm-6b
# kernel_file = "./models/chatglm-6b-int4/quantization_kernels.so"
# tokenizer = AutoTokenizer.from_pretrained("./models/chatglm-6b-int4", trust_remote_code=True, revision="")
# model = AutoModel.from_pretrained("./models/chatglm-6b-int4", trust_remote_code=True, revision="").half().cuda()
# model = AutoModel.from_pretrained("./models/chatglm-6b-int4", trust_remote_code=True, revision="").float()
# model = model.quantize(bits=model_args.quantization_bit, kernel_file=kernel_file)
model = model.eval()
def chat(msg):
history = []
response, history = model.chat(tokenizer, msg, history=history)
print("response:", response)
return response
iface = gr.Interface(fn=chat, inputs="text", outputs="text")
iface.launch()