Spaces:
Runtime error
Runtime error
import gradio as gr | |
import tensorflow as tf | |
from tensorflow.keras.preprocessing import image | |
import numpy as np | |
# Load your trained TensorFlow face recognition model | |
model = tf.keras.models.load_model(r"C:\Users\tiruv\Downloads\1.h5") | |
# Map the predicted label to a class name | |
class_names = { | |
0: "akilesh", | |
1: "aswath", | |
2: "bhuvan", | |
3: "karthikeyan", | |
4: "lalpradhap", | |
5: "muhilan", | |
6: "ragavan", | |
7: "sanjay", | |
8: "seenivas", | |
9: "sharvesh" | |
} | |
def predict_image(img): | |
if img is None: | |
return "No image provided" | |
try: | |
# Preprocess the image | |
img = img.resize((224, 224)) # Ensure the size matches your training data | |
img_array = image.img_to_array(img) | |
img_array = tf.expand_dims(img_array, 0) # Create a batch of size 1 | |
# Predict the class | |
predictions = model.predict(img_array) | |
predicted_class = np.argmax(predictions[0]) | |
# Map prediction to class name | |
predicted_class_name = class_names.get(predicted_class, "Unknown class") | |
return predicted_class_name | |
except Exception as e: | |
return f"Error: {str(e)}" | |
# Create Gradio interface | |
gr.Interface(fn=predict_image, | |
inputs=gr.Image(type="pil"), # Default configuration | |
outputs="text", | |
title="Image Classifier", | |
description="Upload an image to classify it").launch(share=True) | |