Aiducation-Edtech-GenAI / student_functions.py
Neurolingua's picture
Update student_functions.py
4bd802c verified
raw
history blame
11.9 kB
from gtts import gTTS
import shutil
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
import json
from youtube_transcript_api import YouTubeTranscriptApi
from youtube_transcript_api.formatters import JSONFormatter
from urllib.parse import urlparse, parse_qs
from pypdf import PdfReader
from mistralai import Mistral
import os
API_KEY = 'xQ2Zhfsp4cLar4lvBRDWZKljvp0Ej427'
MODEL = "mistral-large-latest"
client = Mistral(api_key=API_KEY)
AI71_API_KEY = "api71-api-652e5c6c-8edf-41d0-9c34-28522b07bef9"
def extract_text_from_pdf_s(pdf_path):
text = ""
reader = PdfReader(pdf_path)
for page in reader.pages:
text += page.extract_text() + "\n"
generate_speech_from_pdf(text[:len(text) // 2])
return text
def generate_response_from_pdf(query, pdf_text):
response = ''
chat_response = client.chat.complete(
model=MODEL,
messages=[
{"role": "system", "content": "You are a pdf questioning assistant."},
{"role": "user",
"content": f'''Answer the querry based on the given content.Content:{pdf_text},query:{query}'''},
]
)
response_content = chat_response.choices[0].message.content
return jsonify({"response": response_content})
def generate_quiz(subject, topic, count, difficult):
quiz_output = ""
chat_response = client.chat.complete(
model=MODEL,
messages=[
{"role": "system", "content": "You are a teaching assistant."},
{"role": "user",
"content": f'''Generate {count} multiple-choice questions in the subject of {subject} for the topic {topic} for students at a {difficult} level. Ensure the questions are well-diversified and cover various aspects of the topic. Format the questions as follows:
Question: [Question text] [specific concept in a question]
<<o>> [Option1]
<<o>> [Option2]
<<o>> [Option3]
<<o>> [Option4],
Answer: [Option number]'''},
]
)
response_content = chat_response.choices[0].message.content
return jsonify({"response": response_content})
def generate_ai_response(query):
ai_response = ''
chat_response = client.chat.complete(
model=MODEL,
messages=[
{"role": "system", "content": "You are a teaching assistant."},
{"role": "user", "content": f'Assist the user clearly for his questions: {query}.'},
]
)
response_content = chat_response.choices[0].message.content
return jsonify({"response": response_content})
def generate_project_idea(subject, topic, overview):
string = ''
chat_response = client.chat.complete(
model=MODEL,
messages=[
{"role": "system", "content": "You are a project building assistant."},
{"role": "user",
"content": f'''Give the different project ideas to build project in {subject} specifically in {topic} for school students. {overview}.'''},
]
)
response_content = chat_response.choices[0].message.content
return jsonify({"response": response_content})
def generate_project_idea_questions(project_idea, query):
project_idea_answer = ''
chat_response = client.chat.complete(
model=MODEL,
messages=[
{"role": "system", "content": "You are a project building assistant."},
{"role": "user",
"content": f'''Assist me clearly for the following question for the given idea. Idea: {project_idea}. Question: {query}'''},
]
)
response_content = chat_response.choices[0].message.content
return jsonify({"response": response_content})
def generate_step_by_step_explanation(query):
explanation = ''
chat_response = client.chat.complete(
model=MODEL,
messages=[
{"role": "system", "content": "You are the best teaching assistant."},
{"role": "user",
"content": f'''Provide me the clear step by step explanation answer for the following question. Question: {query}'''},
]
)
response_content = chat_response.choices[0].message.content
return jsonify({"response": response_content})
def study_plan(subjects, hours, arealag, goal):
plan = ''
chat_response = client.chat.complete(
model=MODEL,
messages=[
{"role": "system", "content": "You are the best teaching assistant."},
{"role": "user",
"content": f'''Provide me the clear personalised study plan for the subjects {subjects} i lag in areas like {arealag}, im available for {hours} hours per day and my study goal is to {goal}.Provide me like a timetable like day1,day2 for 5 days with concepts,also suggest some books'''},
]
)
response_content = chat_response.choices[0].message.content
return jsonify({"response": response_content.replace('\n', '<br>')})
class ConversationBufferMemory:
def __init__(self, memory_key="chat_history"):
self.memory_key = memory_key
self.buffer = []
def add_to_memory(self, interaction):
self.buffer.append(interaction)
def get_memory(self):
return "\n".join([f"Human: {entry['user']}\nAssistant: {entry['assistant']}" for entry in self.buffer])
def spk_msg(user_input, memory):
chat_history = memory.get_memory()
msg = ''
# Construct the message for the API request
messages = [
{"role": "system",
"content": "You are a nice speaker having a conversation with a human.You ask the question the user choose the topic and let user answer.Provide the response only within 2 sentence"},
{"role": "user",
"content": f"Previous conversation:\n{chat_history}\n\nNew human question: {user_input}\nResponse:"}
]
if 1==1:
chat_response = client.chat.complete(
model=MODEL,
messages=[
{"role": "system", "content": "You are a pdf questioning assistant."},
{"role": "user",
"content": f'''Answer the querry based on the given content.Content:{pdf_text},query:{query}'''},
]
)
response_content = chat_response.choices[0].message.content
return jsonify({"response": response_content})
def get_first_youtube_video_link(query):
url = f'https://www.youtube.com/results?search_query={query}'
# Navigate to the URL
driver.get(url)
# Find the first video link
try:
# Find the first video element
first_video_element = driver.find_element(By.XPATH, '//a[@id="video-title"]')
video_link = first_video_element.get_attribute('href')
print(video_link)
finally:
# Close the WebDriver
driver.quit()
def content_translate(text):
translated_content = ''
chat_response = client.chat.complete(
model=MODEL,
messages=[
{"role": "system", "content": "You are the best teaching assistant."},
{"role": "user", "content": f'''Translate the text to hindi. Text: {text}'''},
]
)
response_content = chat_response.choices[0].message.content
return jsonify({"response": response_content})
def get_video_id(url):
"""
Extract the video ID from a YouTube URL.
"""
parsed_url = urlparse(url)
if parsed_url.hostname == 'www.youtube.com' or parsed_url.hostname == 'youtube.com':
video_id = parse_qs(parsed_url.query).get('v')
if video_id:
return video_id[0]
elif parsed_url.hostname == 'youtu.be':
return parsed_url.path[1:]
return None
def extract_captions(video_url):
"""
Extract captions from a YouTube video URL.
"""
video_id = get_video_id(video_url)
if not video_id:
print("Invalid YouTube URL.")
return
try:
transcript = YouTubeTranscriptApi.get_transcript(video_id)
formatter = JSONFormatter()
formatted_transcript = formatter.format_transcript(transcript)
# Save captions to a file
with open(f'youtube_captions.json', 'w') as file:
file.write(formatted_transcript)
print("Captions have been extracted and saved as JSON.")
except Exception as e:
print(f"An error occurred: {e}")
def extract_text_from_json(filename):
# Open and read the JSON file
with open(filename, 'r') as file:
data = json.load(file)
# Extract and print the text fields
texts = [entry['text'] for entry in data]
return texts
def get_simplified_explanation(text):
prompt = (
f"The following is a transcript of a video: \n\n{text}\n\n"
"Please provide a simplified explanation of the video for easy understanding."
)
response = ""
chat_response = client.chat.complete(
model=MODEL,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt},
]
)
response_content = chat_response.choices[0].message.content
return jsonify({"response": response_content})
def summarise_text(url):
extract_captions(url)
texts = extract_text_from_json(r'youtube_captions.json')
os.remove('youtube_captions.json')
first_half = (get_simplified_explanation(texts[:len(texts) // 2]))
second_half = (get_simplified_explanation(texts[len(texts) // 2:]))
return (first_half + second_half)
def generate_speech_from_pdf(content):
directory = 'speech'
keep_file = 'nil.txt'
# Check if the directory exists
if os.path.isdir(directory):
for filename in os.listdir(directory):
file_path = os.path.join(directory, filename)
# Check if the current file is not the one to keep and is a file
if filename != keep_file and os.path.isfile(file_path):
try:
os.remove(file_path) # Delete the file
print(f"Deleted {file_path}")
except Exception as e:
print(f"Error deleting {file_path}: {e}")
else:
print(f"Directory {directory} does not exist.")
speech = ''
chat_response = client.chat.complete(
model=MODEL,
messages=[
{"role": "system", "content": "You are a summarising assistant."},
{"role": "user",
"content": f'''Summarise the given content for each chapter for 1 sentence.Content={content}'''},
]
)
response_content = chat_response.choices[0].message.content
if response_content:
speech += response_content
speech = speech[:-6].replace("###", '')
chapters = speech.split('\n\n')
pdf_audio(chapters[:4])
return
def pdf_audio(chapters):
for i in range(len(chapters)):
tts = gTTS(text=chapters[i], lang='en', slow=False)
tts.save(f'speech/chapter {i + 1}.mp3')
return
def content_translate(text):
translated_content = ''
chat_response = client.chat.complete(
model=MODEL,
messages=[
{"role": "system", "content": "You are the best teaching assistant."},
{"role": "user", "content": f'''Translate the text to hindi. Text: {text}'''},
]
)
response_content = chat_response.choices[0].message.content
return jsonify({"response": response_content})