Spaces:
Running
Running
from flask import Flask, request | |
from twilio.twiml.messaging_response import MessagingResponse | |
from twilio.rest import Client | |
import os | |
import requests | |
from PIL import Image | |
import shutil | |
from langchain.vectorstores.chroma import Chroma | |
from langchain.prompts import ChatPromptTemplate | |
from langchain_community.llms.ollama import Ollama | |
from get_embedding_function import get_embedding_function | |
from langchain.document_loaders.pdf import PyPDFDirectoryLoader | |
from langchain.text_splitters import RecursiveCharacterTextSplitter | |
from langchain.schema.document import Document | |
app = Flask(__name__) | |
UPLOAD_FOLDER = '/code/uploads' | |
CHROMA_PATH = UPLOAD_FOLDER # Use the same folder for Chroma | |
if not os.path.exists(UPLOAD_FOLDER): | |
os.makedirs(UPLOAD_FOLDER) | |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER | |
class ConversationBufferMemory: | |
def __init__(self, max_size=6): | |
self.memory = [] | |
self.max_size = max_size | |
def add_to_memory(self, interaction): | |
self.memory.append(interaction) | |
if len(self.memory) > self.max_size: | |
self.memory.pop(0) | |
def get_memory(self): | |
return self.memory | |
conversation_memory = ConversationBufferMemory(max_size=2) | |
account_sid = os.environ.get('TWILIO_ACCOUNT_SID') | |
auth_token = os.environ.get('TWILIO_AUTH_TOKEN') | |
client = Client(account_sid, auth_token) | |
from_whatsapp_number = 'whatsapp:+14155238886' | |
PROMPT_TEMPLATE = """ | |
Answer the question based only on the following context: | |
{context} | |
--- | |
Answer the question based on the above context: {question} | |
""" | |
from bs4 import BeautifulSoup | |
import requests | |
from requests.auth import HTTPBasicAuth | |
from PIL import Image | |
from io import BytesIO | |
import pandas as pd | |
from urllib.parse import urlparse | |
import os | |
from pypdf import PdfReader | |
from ai71 import AI71 | |
import uuid | |
from inference_sdk import InferenceHTTPClient | |
import base64 | |
AI71_API_KEY = os.environ.get('AI71_API_KEY') | |
def generate_response(query, chat_history): | |
response = '' | |
for chunk in AI71(AI71_API_KEY).chat.completions.create( | |
model="tiiuae/falcon-180b-chat", | |
messages=[ | |
{"role": "system", "content": "You are the best agricultural assistant. Remember to give a response in not more than 2 sentences. Greet the user if the user greets you."}, | |
{"role": "user", "content": f'''Answer the query based on history {chat_history}: {query}'''}, | |
], | |
stream=True, | |
): | |
if chunk.choices[0].delta.content: | |
response += chunk.choices[0].delta.content | |
return response.replace("###", '').replace('\nUser:', '') | |
def predict_pest(filepath): | |
CLIENT = InferenceHTTPClient( | |
api_url="https://detect.roboflow.com", | |
api_key="oF1aC4b1FBCDtK8CoKx7" | |
) | |
result = CLIENT.infer(filepath, model_id="pest-detection-ueoco/1") | |
return result['predictions'][0] | |
def predict_disease(filepath): | |
CLIENT = InferenceHTTPClient( | |
api_url="https://classify.roboflow.com", | |
api_key="oF1aC4b1FBCDtK8CoKx7" | |
) | |
result = CLIENT.infer(filepath, model_id="plant-disease-detection-iefbi/1") | |
return result['predicted_classes'][0] | |
def convert_img(url, account_sid, auth_token): | |
try: | |
response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token)) | |
response.raise_for_status() | |
parsed_url = urlparse(url) | |
media_id = parsed_url.path.split('/')[-1] | |
filename = f"downloaded_media_{media_id}" | |
media_filepath = os.path.join(UPLOAD_FOLDER, filename) | |
with open(media_filepath, 'wb') as file: | |
file.write(response.content) | |
print(f"Media downloaded successfully and saved as {media_filepath}") | |
with open(media_filepath, 'rb') as img_file: | |
image = Image.open(img_file) | |
converted_filename = f"image.jpg" | |
converted_filepath = os.path.join(UPLOAD_FOLDER, converted_filename) | |
image.convert('RGB').save(converted_filepath, 'JPEG') | |
return converted_filepath | |
except requests.exceptions.HTTPError as err: | |
print(f"HTTP error occurred: {err}") | |
except Exception as err: | |
print(f"An error occurred: {err}") | |
def get_weather(city): | |
city = city.strip().replace(' ', '+') | |
r = requests.get(f'https://www.google.com/search?q=weather+in+{city}') | |
soup = BeautifulSoup(r.text, 'html.parser') | |
temperature = soup.find('div', attrs={'class': 'BNeawe iBp4i AP7Wnd'}).text | |
return temperature | |
from zenrows import ZenRowsClient | |
Zenrow_api = os.environ.get('Zenrow_api') | |
zenrows_client = ZenRowsClient(Zenrow_api) | |
def get_rates(): | |
url = "https://www.kisandeals.com/mandiprices/ALL/TAMIL-NADU/ALL" | |
response = zenrows_client.get(url) | |
if response.status_code == 200: | |
soup = BeautifulSoup(response.content, 'html.parser') | |
rows = soup.select('table tbody tr') | |
data = {} | |
for row in rows: | |
columns = row.find_all('td') | |
if len(columns) >= 2: | |
commodity = columns[0].get_text(strip=True) | |
price = columns[1].get_text(strip=True) | |
if '₹' in price: | |
data[commodity] = price | |
return str(data) + " These are the prices for 1 kg" | |
def get_news(): | |
news = [] | |
url = "https://economictimes.indiatimes.com/news/economy/agriculture?from=mdr" | |
response = zenrows_client.get(url) | |
if response.status_code == 200: | |
soup = BeautifulSoup(response.content, 'html.parser') | |
headlines = soup.find_all("div", class_="eachStory") | |
for story in headlines: | |
headline = story.find('h3').text.strip() | |
news.append(headline) | |
return news | |
def download_and_save_as_txt(url, account_sid, auth_token): | |
try: | |
response = requests.get(url, auth=HTTPBasicAuth(account_sid, auth_token)) | |
response.raise_for_status() | |
parsed_url = urlparse(url) | |
media_id = parsed_url.path.split('/')[-1] | |
filename = f"pdf_file.pdf" | |
txt_filepath = os.path.join(UPLOAD_FOLDER, filename) | |
with open(txt_filepath, 'wb') as file: | |
file.write(response.content) | |
print(f"Media downloaded successfully and saved as {txt_filepath}") | |
return txt_filepath | |
except requests.exceptions.HTTPError as err: | |
print(f"HTTP error occurred: {err}") | |
except Exception as err: | |
print(f"An error occurred: {err}") | |
def query_rag(query_text: str): | |
embedding_function = get_embedding_function() | |
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function) | |
results = db.similarity_search_with_score(query_text, k=5) | |
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results]) | |
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE) | |
prompt = prompt_template.format(context=context_text, question=query_text) | |
model = Ollama(model="llama2") | |
response_text = model.invoke(prompt) | |
return response_text | |
def save_pdf_and_update_database(media_url): | |
response = requests.get(media_url) | |
pdf_filename = os.path.join(UPLOAD_FOLDER, f"{uuid.uuid4()}.pdf") | |
with open(pdf_filename, 'wb') as f: | |
f.write(response.content) | |
document_loader = PyPDFDirectoryLoader(UPLOAD_FOLDER) | |
documents = document_loader.load() | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=800, | |
chunk_overlap=80, | |
length_function=len, | |
is_separator_regex=False, | |
) | |
chunks = text_splitter.split_documents(documents) | |
add_to_chroma(chunks) | |
def add_to_chroma(chunks: list[Document]): | |
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=get_embedding_function()) | |
chunks_with_ids = calculate_chunk_ids(chunks) | |
existing_items = db.get(include=[]) | |
existing_ids = set(existing_items["ids"]) | |
new_chunks = [chunk for chunk in chunks_with_ids if chunk.metadata["id"] not in existing_ids] | |
if new_chunks: | |
new_chunk_ids = [chunk.metadata["id"] for chunk in new_chunks] | |
db.add_documents(new_chunks, ids=new_chunk_ids) | |
db.persist() | |
def calculate_chunk_ids(chunks): | |
last_page_id = None | |
current_chunk_index = 0 | |
for chunk in chunks: | |
source = chunk.metadata.get("source") | |
page = chunk.metadata.get("page") | |
current_page_id = f"{source}:{page}" | |
if current_page_id == last_page_id: | |
current_chunk_index += 1 | |
else: | |
current_chunk_index = 0 | |
last_page_id = current_page_id | |
chunk_id = f"{current_page_id}:{current_chunk_index}" | |
chunk.metadata["id"] = chunk_id | |
return chunks | |
def receive_pdf(): | |
media_url = request.values.get("MediaUrl", None) | |
if media_url: | |
save_pdf_and_update_database(media_url) | |
return "PDF processed and saved successfully." | |
return "No media URL found." | |
def incoming_whatsapp(): | |
media_url = request.values.get("MediaUrl", None) | |
from_number = request.values.get("From", "").strip() | |
from_number = from_number[2:] if from_number.startswith("91") else from_number | |
incoming_msg = request.values.get('Body', '').lower() | |
response = MessagingResponse() | |
message = response.message() | |
if media_url: | |
extension = os.path.splitext(media_url)[1] | |
if extension.lower() == ".pdf": | |
media_filepath = download_and_save_as_txt(media_url, account_sid, auth_token) | |
save_pdf_and_update_database(media_url) | |
message.body("The PDF was processed successfully.") | |
else: | |
message.body("Please send a PDF file.") | |
return str(response) | |
if 'get weather for' in incoming_msg: | |
city = incoming_msg.replace("get weather for", "") | |
temperature = get_weather(city) | |
message.body(f'The temperature in {city} is {temperature}.') | |
return str(response) | |
if 'get rates' in incoming_msg: | |
message.body(get_rates()) | |
return str(response) | |
if 'get news' in incoming_msg: | |
message.body(get_news()) | |
return str(response) | |
if 'pest' in incoming_msg: | |
text = predict_pest(media_filepath) | |
message.body(text) | |
return str(response) | |
if 'disease' in incoming_msg: | |
text = predict_disease(media_filepath) | |
message.body(text) | |
return str(response) | |
if 'question:' in incoming_msg: | |
conversation_memory.add_to_memory(f"User: {incoming_msg}") | |
chat_history = "\n".join(conversation_memory.get_memory()) | |
response_text = generate_response(incoming_msg.replace("question:", ""), chat_history) | |
conversation_memory.add_to_memory(f"Assistant: {response_text}") | |
message.body(response_text) | |
return str(response) | |
if 'query:' in incoming_msg: | |
query = incoming_msg.replace("query:", "").strip() | |
response_text = query_rag(query) | |
message.body(response_text) | |
return str(response) | |
message.body("I'm sorry, I don't understand that command.") | |
return str(response) | |
if __name__ == "__main__": | |
app.run(debug=True) | |