Mini-RAG-QA / app.py
ayush-thakur02's picture
Update app.py
194076d verified
raw
history blame
2.22 kB
import gradio as gr
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from nltk import word_tokenize
from nltk.stem import WordNetLemmatizer
from nltk.corpus import stopwords
import nltk
import json
# Download NLTK resources
nltk.download('punkt')
nltk.download('wordnet')
nltk.download('stopwords')
def preprocess(sentence):
lemmatizer = WordNetLemmatizer()
stop_words = set(stopwords.words('english'))
tokens = word_tokenize(sentence.lower())
tokens = [lemmatizer.lemmatize(word) for word in tokens if word.isalnum()]
tokens = [word for word in tokens if word not in stop_words]
return ' '.join(tokens)
def find_most_similar(sentence, candidates, threshold=0.15):
input_bits = preprocess(sentence)
chunks = [preprocess(candidate) for candidate in candidates]
vectorizer = TfidfVectorizer()
vectors = vectorizer.fit_transform([input_bits] + chunks)
similarity_scores = cosine_similarity(vectors[0:1], vectors[1:]).flatten()
similar_sentences = []
for i, score in enumerate(similarity_scores):
if score >= threshold:
similar_sentences.append({"sentence": candidates[i], "f(score)": round(score, 4)})
return similar_sentences
def read_sentences_from_file(file_location):
with open(file_location, 'r') as file:
text = file.read().replace('\n', ' ')
sentences = [sentence.strip() for sentence in text.split('.') if sentence.strip()]
return sentences
def fetch_vectors(file, sentence):
file_location = file.name
chunks = read_sentences_from_file(file_location)
similar_sentences = find_most_similar(sentence, chunks, threshold=0.15)
return json.dumps(similar_sentences, indent=4)
# Interface
file_uploader = gr.File(label="Upload a .txt file")
text_input = gr.Textbox(label="Enter a sentence")
output_text = gr.Textbox(label="RAG -QA")
iface = gr.Interface(
fn=fetch_vectors,
inputs=[file_uploader, text_input],
outputs=output_text,
title="Minimal RAG - For QA (Super Fast/Modeless)",
description="Upload a text file and enter the question. The threshold is set to 0.15."
)
iface.launch(debug=True)