|
import gc |
|
import re |
|
import time |
|
|
|
import numpy as np |
|
import torch |
|
import transformers |
|
|
|
import modules.shared as shared |
|
from modules.callbacks import (Iteratorize, Stream, |
|
_SentinelTokenStoppingCriteria) |
|
from modules.extensions import apply_extensions |
|
from modules.html_generator import generate_4chan_html, generate_basic_html |
|
from modules.models import local_rank |
|
|
|
|
|
def get_max_prompt_length(tokens): |
|
max_length = 2048-tokens |
|
if shared.soft_prompt: |
|
max_length -= shared.soft_prompt_tensor.shape[1] |
|
return max_length |
|
|
|
def encode(prompt, tokens_to_generate=0, add_special_tokens=True): |
|
if shared.is_RWKV: |
|
input_ids = shared.tokenizer.encode(str(prompt)) |
|
input_ids = np.array(input_ids).reshape(1, len(input_ids)) |
|
return input_ids |
|
else: |
|
input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens) |
|
if shared.args.cpu: |
|
return input_ids |
|
elif shared.args.flexgen: |
|
return input_ids.numpy() |
|
elif shared.args.deepspeed: |
|
return input_ids.to(device=local_rank) |
|
else: |
|
return input_ids.cuda() |
|
|
|
def decode(output_ids): |
|
|
|
if re.match('oasst-*', shared.model_name.lower()): |
|
return shared.tokenizer.decode(output_ids, skip_special_tokens=False) |
|
else: |
|
reply = shared.tokenizer.decode(output_ids, skip_special_tokens=True) |
|
reply = reply.replace(r'<|endoftext|>', '') |
|
return reply |
|
|
|
def generate_softprompt_input_tensors(input_ids): |
|
inputs_embeds = shared.model.transformer.wte(input_ids) |
|
inputs_embeds = torch.cat((shared.soft_prompt_tensor, inputs_embeds), dim=1) |
|
filler_input_ids = torch.zeros((1, inputs_embeds.shape[1]), dtype=input_ids.dtype).to(shared.model.device) |
|
|
|
return inputs_embeds, filler_input_ids |
|
|
|
|
|
def fix_gpt4chan(s): |
|
for i in range(10): |
|
s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s) |
|
s = re.sub("--- [0-9]*\n *\n---", "---", s) |
|
s = re.sub("--- [0-9]*\n\n\n---", "---", s) |
|
return s |
|
|
|
|
|
def fix_galactica(s): |
|
s = s.replace(r'\[', r'$') |
|
s = s.replace(r'\]', r'$') |
|
s = s.replace(r'\(', r'$') |
|
s = s.replace(r'\)', r'$') |
|
s = s.replace(r'$$', r'$') |
|
s = re.sub(r'\n', r'\n\n', s) |
|
s = re.sub(r"\n{3,}", "\n\n", s) |
|
return s |
|
|
|
def formatted_outputs(reply, model_name): |
|
if not (shared.args.chat or shared.args.cai_chat): |
|
if model_name.lower().startswith('galactica'): |
|
reply = fix_galactica(reply) |
|
return reply, reply, generate_basic_html(reply) |
|
elif model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')): |
|
reply = fix_gpt4chan(reply) |
|
return reply, 'Only applicable for GALACTICA models.', generate_4chan_html(reply) |
|
else: |
|
return reply, 'Only applicable for GALACTICA models.', generate_basic_html(reply) |
|
else: |
|
return reply |
|
|
|
def clear_torch_cache(): |
|
gc.collect() |
|
if not shared.args.cpu: |
|
torch.cuda.empty_cache() |
|
|
|
def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=None, stopping_string=None): |
|
clear_torch_cache() |
|
t0 = time.time() |
|
|
|
|
|
|
|
if shared.is_RWKV: |
|
try: |
|
if shared.args.no_stream: |
|
reply = shared.model.generate(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k) |
|
yield formatted_outputs(reply, shared.model_name) |
|
else: |
|
yield formatted_outputs(question, shared.model_name) |
|
|
|
|
|
for reply in shared.model.generate_with_streaming(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k): |
|
yield formatted_outputs(reply, shared.model_name) |
|
finally: |
|
t1 = time.time() |
|
output = encode(reply)[0] |
|
input_ids = encode(question) |
|
print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(input_ids[0]))/(t1-t0):.2f} tokens/s, {len(output)-len(input_ids[0])} tokens)") |
|
return |
|
|
|
original_question = question |
|
if not (shared.args.chat or shared.args.cai_chat): |
|
question = apply_extensions(question, "input") |
|
if shared.args.verbose: |
|
print(f"\n\n{question}\n--------------------\n") |
|
|
|
input_ids = encode(question, max_new_tokens) |
|
original_input_ids = input_ids |
|
output = input_ids[0] |
|
cuda = "" if (shared.args.cpu or shared.args.deepspeed or shared.args.flexgen) else ".cuda()" |
|
eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else [] |
|
if eos_token is not None: |
|
eos_token_ids.append(int(encode(eos_token)[0][-1])) |
|
stopping_criteria_list = transformers.StoppingCriteriaList() |
|
if stopping_string is not None: |
|
|
|
t = encode(stopping_string, 0, add_special_tokens=False) |
|
stopping_criteria_list.append(_SentinelTokenStoppingCriteria(sentinel_token_ids=t, starting_idx=len(input_ids[0]))) |
|
|
|
if not shared.args.flexgen: |
|
generate_params = [ |
|
f"max_new_tokens=max_new_tokens", |
|
f"eos_token_id={eos_token_ids}", |
|
f"stopping_criteria=stopping_criteria_list", |
|
f"do_sample={do_sample}", |
|
f"temperature={temperature}", |
|
f"top_p={top_p}", |
|
f"typical_p={typical_p}", |
|
f"repetition_penalty={repetition_penalty}", |
|
f"top_k={top_k}", |
|
f"min_length={min_length if shared.args.no_stream else 0}", |
|
f"no_repeat_ngram_size={no_repeat_ngram_size}", |
|
f"num_beams={num_beams}", |
|
f"penalty_alpha={penalty_alpha}", |
|
f"length_penalty={length_penalty}", |
|
f"early_stopping={early_stopping}", |
|
] |
|
else: |
|
generate_params = [ |
|
f"max_new_tokens={max_new_tokens if shared.args.no_stream else 8}", |
|
f"do_sample={do_sample}", |
|
f"temperature={temperature}", |
|
f"stop={eos_token_ids[-1]}", |
|
] |
|
if shared.args.deepspeed: |
|
generate_params.append("synced_gpus=True") |
|
if shared.soft_prompt: |
|
inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids) |
|
generate_params.insert(0, "inputs_embeds=inputs_embeds") |
|
generate_params.insert(0, "inputs=filler_input_ids") |
|
else: |
|
generate_params.insert(0, "inputs=input_ids") |
|
|
|
try: |
|
|
|
if shared.args.no_stream: |
|
with torch.no_grad(): |
|
output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0] |
|
if shared.soft_prompt: |
|
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:])) |
|
|
|
reply = decode(output) |
|
if not (shared.args.chat or shared.args.cai_chat): |
|
reply = original_question + apply_extensions(reply[len(question):], "output") |
|
|
|
yield formatted_outputs(reply, shared.model_name) |
|
|
|
|
|
|
|
elif not shared.args.flexgen: |
|
|
|
def generate_with_callback(callback=None, **kwargs): |
|
kwargs['stopping_criteria'].append(Stream(callback_func=callback)) |
|
clear_torch_cache() |
|
with torch.no_grad(): |
|
shared.model.generate(**kwargs) |
|
|
|
def generate_with_streaming(**kwargs): |
|
return Iteratorize(generate_with_callback, kwargs, callback=None) |
|
|
|
yield formatted_outputs(original_question, shared.model_name) |
|
with eval(f"generate_with_streaming({', '.join(generate_params)})") as generator: |
|
for output in generator: |
|
if shared.soft_prompt: |
|
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:])) |
|
reply = decode(output) |
|
|
|
if not (shared.args.chat or shared.args.cai_chat): |
|
reply = original_question + apply_extensions(reply[len(question):], "output") |
|
|
|
if output[-1] in eos_token_ids: |
|
break |
|
yield formatted_outputs(reply, shared.model_name) |
|
|
|
yield formatted_outputs(reply, shared.model_name) |
|
|
|
|
|
else: |
|
for i in range(max_new_tokens//8+1): |
|
clear_torch_cache() |
|
with torch.no_grad(): |
|
output = eval(f"shared.model.generate({', '.join(generate_params)})")[0] |
|
if shared.soft_prompt: |
|
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:])) |
|
reply = decode(output) |
|
|
|
if not (shared.args.chat or shared.args.cai_chat): |
|
reply = original_question + apply_extensions(reply[len(question):], "output") |
|
|
|
if np.count_nonzero(np.isin(input_ids[0], eos_token_ids)) < np.count_nonzero(np.isin(output, eos_token_ids)): |
|
break |
|
yield formatted_outputs(reply, shared.model_name) |
|
|
|
input_ids = np.reshape(output, (1, output.shape[0])) |
|
if shared.soft_prompt: |
|
inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids) |
|
|
|
yield formatted_outputs(reply, shared.model_name) |
|
|
|
finally: |
|
t1 = time.time() |
|
print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(original_input_ids[0]))/(t1-t0):.2f} tokens/s, {len(output)-len(original_input_ids[0])} tokens)") |
|
return |
|
|