|
""" |
|
A comprehensive toolkit for generating and translating subtitles from media files. |
|
|
|
This module provides functionalities to: |
|
1. Download AI models from Hugging Face without requiring a token. |
|
2. Transcribe audio from media files using a high-performance Whisper model. |
|
3. Generate multiple formats of SRT subtitles (default, professional multi-line, word-level, and shorts-style). |
|
4. Translate subtitles into different languages. |
|
5. Orchestrate the entire process through a simple-to-use main function. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import re |
|
import gc |
|
import uuid |
|
import math |
|
import shutil |
|
import string |
|
import requests |
|
import urllib.request |
|
import urllib.error |
|
|
|
import torch |
|
import pysrt |
|
from tqdm.auto import tqdm |
|
from faster_whisper import WhisperModel |
|
from deep_translator import GoogleTranslator |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SUBTITLE_FOLDER = "./generated_subtitle" |
|
TEMP_FOLDER = "./subtitle_audio" |
|
|
|
|
|
LANGUAGE_CODE = { |
|
'Akan': 'aka', 'Albanian': 'sq', 'Amharic': 'am', 'Arabic': 'ar', 'Armenian': 'hy', |
|
'Assamese': 'as', 'Azerbaijani': 'az', 'Basque': 'eu', 'Bashkir': 'ba', 'Bengali': 'bn', |
|
'Bosnian': 'bs', 'Bulgarian': 'bg', 'Burmese': 'my', 'Catalan': 'ca', 'Chinese': 'zh', |
|
'Croatian': 'hr', 'Czech': 'cs', 'Danish': 'da', 'Dutch': 'nl', 'English': 'en', |
|
'Estonian': 'et', 'Faroese': 'fo', 'Finnish': 'fi', 'French': 'fr', 'Galician': 'gl', |
|
'Georgian': 'ka', 'German': 'de', 'Greek': 'el', 'Gujarati': 'gu', 'Haitian Creole': 'ht', |
|
'Hausa': 'ha', 'Hebrew': 'he', 'Hindi': 'hi', 'Hungarian': 'hu', 'Icelandic': 'is', |
|
'Indonesian': 'id', 'Italian': 'it', 'Japanese': 'ja', 'Kannada': 'kn', 'Kazakh': 'kk', |
|
'Korean': 'ko', 'Kurdish': 'ckb', 'Kyrgyz': 'ky', 'Lao': 'lo', 'Lithuanian': 'lt', |
|
'Luxembourgish': 'lb', 'Macedonian': 'mk', 'Malay': 'ms', 'Malayalam': 'ml', 'Maltese': 'mt', |
|
'Maori': 'mi', 'Marathi': 'mr', 'Mongolian': 'mn', 'Nepali': 'ne', 'Norwegian': 'no', |
|
'Norwegian Nynorsk': 'nn', 'Pashto': 'ps', 'Persian': 'fa', 'Polish': 'pl', 'Portuguese': 'pt', |
|
'Punjabi': 'pa', 'Romanian': 'ro', 'Russian': 'ru', 'Serbian': 'sr', 'Sinhala': 'si', |
|
'Slovak': 'sk', 'Slovenian': 'sl', 'Somali': 'so', 'Spanish': 'es', 'Sundanese': 'su', |
|
'Swahili': 'sw', 'Swedish': 'sv', 'Tamil': 'ta', 'Telugu': 'te', 'Thai': 'th', |
|
'Turkish': 'tr', 'Ukrainian': 'uk', 'Urdu': 'ur', 'Uzbek': 'uz', 'Vietnamese': 'vi', |
|
'Welsh': 'cy', 'Yiddish': 'yi', 'Yoruba': 'yo', 'Zulu': 'zu' |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
def download_file(url, download_file_path, redownload=False): |
|
"""Download a single file with urllib and a tqdm progress bar.""" |
|
base_path = os.path.dirname(download_file_path) |
|
os.makedirs(base_path, exist_ok=True) |
|
|
|
if os.path.exists(download_file_path): |
|
if redownload: |
|
os.remove(download_file_path) |
|
tqdm.write(f"β»οΈ Redownloading: {os.path.basename(download_file_path)}") |
|
elif os.path.getsize(download_file_path) > 0: |
|
tqdm.write(f"βοΈ Skipped (already exists): {os.path.basename(download_file_path)}") |
|
return True |
|
|
|
try: |
|
request = urllib.request.urlopen(url) |
|
total = int(request.headers.get('Content-Length', 0)) |
|
except urllib.error.URLError as e: |
|
print(f"β Error: Unable to open URL: {url}") |
|
print(f"Reason: {e.reason}") |
|
return False |
|
|
|
with tqdm(total=total, desc=os.path.basename(download_file_path), unit='B', unit_scale=True, unit_divisor=1024) as progress: |
|
try: |
|
urllib.request.urlretrieve( |
|
url, |
|
download_file_path, |
|
reporthook=lambda count, block_size, total_size: progress.update(block_size) |
|
) |
|
except urllib.error.URLError as e: |
|
print(f"β Error: Failed to download {url}") |
|
print(f"Reason: {e.reason}") |
|
return False |
|
|
|
tqdm.write(f"β¬οΈ Downloaded: {os.path.basename(download_file_path)}") |
|
return True |
|
|
|
|
|
def download_model(repo_id, download_folder="./", redownload=False): |
|
""" |
|
Downloads all files from a Hugging Face repository using the public API, |
|
avoiding the need for a Hugging Face token for public models. |
|
""" |
|
if not download_folder.strip(): |
|
download_folder = "." |
|
|
|
api_url = f"https://huggingface.co/api/models/{repo_id}" |
|
model_name = repo_id.split('/')[-1] |
|
download_dir = os.path.abspath(f"{download_folder.rstrip('/')}/{model_name}") |
|
os.makedirs(download_dir, exist_ok=True) |
|
|
|
print(f"π Download directory: {download_dir}") |
|
|
|
try: |
|
response = requests.get(api_url) |
|
response.raise_for_status() |
|
except requests.exceptions.RequestException as e: |
|
print(f"β Error fetching repo info: {e}") |
|
return None |
|
|
|
data = response.json() |
|
files_to_download = [f["rfilename"] for f in data.get("siblings", [])] |
|
|
|
if not files_to_download: |
|
print(f"β οΈ No files found in repo '{repo_id}'.") |
|
return None |
|
|
|
print(f"π¦ Found {len(files_to_download)} files in repo '{repo_id}'. Checking cache...") |
|
|
|
for file in tqdm(files_to_download, desc="Processing files", unit="file"): |
|
file_url = f"https://huggingface.co/{repo_id}/resolve/main/{file}" |
|
file_path = os.path.join(download_dir, file) |
|
download_file(file_url, file_path, redownload=redownload) |
|
|
|
return download_dir |
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_language_name(code): |
|
"""Retrieves the full language name from its code.""" |
|
for name, value in LANGUAGE_CODE.items(): |
|
if value == code: |
|
return name |
|
return None |
|
|
|
def clean_file_name(file_path): |
|
"""Generates a clean, unique file name to avoid path issues.""" |
|
dir_name = os.path.dirname(file_path) |
|
base_name, extension = os.path.splitext(os.path.basename(file_path)) |
|
|
|
cleaned_base = re.sub(r'[^a-zA-Z\d]+', '_', base_name) |
|
cleaned_base = re.sub(r'_+', '_', cleaned_base).strip('_') |
|
random_uuid = uuid.uuid4().hex[:6] |
|
|
|
return os.path.join(dir_name, f"{cleaned_base}_{random_uuid}{extension}") |
|
|
|
def format_segments(segments): |
|
"""Formats the raw segments from Whisper into structured lists.""" |
|
sentence_timestamp = [] |
|
words_timestamp = [] |
|
speech_to_text = "" |
|
|
|
for i in segments: |
|
text = i.text.strip() |
|
sentence_id = len(sentence_timestamp) |
|
sentence_timestamp.append({ |
|
"id": sentence_id, |
|
"text": text, |
|
"start": i.start, |
|
"end": i.end, |
|
"words": [] |
|
}) |
|
speech_to_text += text + " " |
|
|
|
for word in i.words: |
|
word_data = { |
|
"word": word.word.strip(), |
|
"start": word.start, |
|
"end": word.end |
|
} |
|
sentence_timestamp[sentence_id]["words"].append(word_data) |
|
words_timestamp.append(word_data) |
|
|
|
return sentence_timestamp, words_timestamp, speech_to_text.strip() |
|
|
|
def get_audio_file(uploaded_file): |
|
"""Copies the uploaded media file to a temporary location for processing.""" |
|
temp_path = os.path.join(TEMP_FOLDER, os.path.basename(uploaded_file)) |
|
cleaned_path = clean_file_name(temp_path) |
|
shutil.copy(uploaded_file, cleaned_path) |
|
return cleaned_path |
|
|
|
def whisper_subtitle(uploaded_file, source_language): |
|
""" |
|
Main transcription function. Loads the model, transcribes the audio, |
|
and generates subtitle files. |
|
""" |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
compute_type = "float16" if torch.cuda.is_available() else "int8" |
|
model_dir = download_model( |
|
"deepdml/faster-whisper-large-v3-turbo-ct2", |
|
download_folder="./", |
|
redownload=False |
|
) |
|
model = WhisperModel(model_dir, device=device, compute_type=compute_type) |
|
|
|
|
|
|
|
|
|
audio_file_path = get_audio_file(uploaded_file) |
|
|
|
|
|
detected_language = source_language |
|
if source_language == "Automatic": |
|
segments, info = model.transcribe(audio_file_path, word_timestamps=True) |
|
detected_lang_code = info.language |
|
detected_language = get_language_name(detected_lang_code) |
|
else: |
|
lang_code = LANGUAGE_CODE[source_language] |
|
segments, _ = model.transcribe(audio_file_path, word_timestamps=True, language=lang_code) |
|
|
|
sentence_timestamps, word_timestamps, transcript_text = format_segments(segments) |
|
|
|
|
|
if os.path.exists(audio_file_path): |
|
os.remove(audio_file_path) |
|
del model |
|
gc.collect() |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
|
|
base_filename = os.path.splitext(os.path.basename(uploaded_file))[0][:30] |
|
srt_base = f"{SUBTITLE_FOLDER}/{base_filename}_{detected_language}.srt" |
|
clean_srt_path = clean_file_name(srt_base) |
|
txt_path = clean_srt_path.replace(".srt", ".txt") |
|
word_srt_path = clean_srt_path.replace(".srt", "_word_level.srt") |
|
custom_srt_path = clean_srt_path.replace(".srt", "_Multiline.srt") |
|
shorts_srt_path = clean_srt_path.replace(".srt", "_shorts.srt") |
|
|
|
|
|
generate_srt_from_sentences(sentence_timestamps, srt_path=clean_srt_path) |
|
word_level_srt(word_timestamps, srt_path=word_srt_path) |
|
shorts_json=write_sentence_srt( |
|
word_timestamps, output_file=shorts_srt_path, max_lines=1, |
|
max_duration_s=2.0, max_chars_per_line=17 |
|
) |
|
sentence_json=write_sentence_srt( |
|
word_timestamps, output_file=custom_srt_path, max_lines=2, |
|
max_duration_s=7.0, max_chars_per_line=38 |
|
) |
|
|
|
with open(txt_path, 'w', encoding='utf-8') as f: |
|
f.write(transcript_text) |
|
|
|
return ( |
|
clean_srt_path, custom_srt_path, word_srt_path, shorts_srt_path, |
|
txt_path, transcript_text, sentence_json,shorts_json,detected_language |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def convert_time_to_srt_format(seconds): |
|
"""Converts seconds to the standard SRT time format (HH:MM:SS,ms).""" |
|
hours = int(seconds // 3600) |
|
minutes = int((seconds % 3600) // 60) |
|
secs = int(seconds % 60) |
|
milliseconds = round((seconds - int(seconds)) * 1000) |
|
|
|
if milliseconds == 1000: |
|
milliseconds = 0 |
|
secs += 1 |
|
if secs == 60: |
|
secs, minutes = 0, minutes + 1 |
|
if minutes == 60: |
|
minutes, hours = 0, hours + 1 |
|
|
|
return f"{hours:02}:{minutes:02}:{secs:02},{milliseconds:03}" |
|
|
|
def split_line_by_char_limit(text, max_chars_per_line=38): |
|
"""Splits a string into multiple lines based on a character limit.""" |
|
words = text.split() |
|
lines = [] |
|
current_line = "" |
|
for word in words: |
|
if not current_line: |
|
current_line = word |
|
elif len(current_line + " " + word) <= max_chars_per_line: |
|
current_line += " " + word |
|
else: |
|
lines.append(current_line) |
|
current_line = word |
|
if current_line: |
|
lines.append(current_line) |
|
return lines |
|
|
|
def merge_punctuation_glitches(subtitles): |
|
"""Cleans up punctuation artifacts at the boundaries of subtitle entries.""" |
|
if not subtitles: |
|
return [] |
|
|
|
cleaned = [subtitles[0]] |
|
for i in range(1, len(subtitles)): |
|
prev = cleaned[-1] |
|
curr = subtitles[i] |
|
|
|
prev_text = prev["text"].rstrip() |
|
curr_text = curr["text"].lstrip() |
|
|
|
match = re.match(r'^([,.:;!?]+)(\s*)(.+)', curr_text) |
|
if match: |
|
punct, _, rest = match.groups() |
|
if not prev_text.endswith(tuple(punct)): |
|
prev["text"] = prev_text + punct |
|
curr_text = rest.strip() |
|
|
|
unwanted_chars = ['"', 'β', 'β', ';', ':'] |
|
for ch in unwanted_chars: |
|
curr_text = curr_text.replace(ch, '') |
|
curr_text = curr_text.strip() |
|
|
|
if not curr_text or re.fullmatch(r'[.,!?]+', curr_text): |
|
prev["end"] = curr["end"] |
|
continue |
|
|
|
curr["text"] = curr_text |
|
prev["text"] = prev["text"].replace('"', '').replace('β', '').replace('β', '') |
|
cleaned.append(curr) |
|
|
|
return cleaned |
|
|
|
import json |
|
def write_sentence_srt( |
|
word_level_timestamps, output_file="subtitles_professional.srt", max_lines=2, |
|
max_duration_s=7.0, max_chars_per_line=38, hard_pause_threshold=0.5, |
|
merge_pause_threshold=0.4 |
|
): |
|
"""Creates professional-grade SRT files and a corresponding timestamp.json file.""" |
|
if not word_level_timestamps: |
|
return |
|
|
|
|
|
draft_subtitles = [] |
|
i = 0 |
|
while i < len(word_level_timestamps): |
|
start_time = word_level_timestamps[i]["start"] |
|
|
|
|
|
current_word_objects = [] |
|
|
|
j = i |
|
while j < len(word_level_timestamps): |
|
entry = word_level_timestamps[j] |
|
|
|
|
|
potential_words = [w["word"] for w in current_word_objects] + [entry["word"]] |
|
potential_text = " ".join(potential_words) |
|
|
|
if len(split_line_by_char_limit(potential_text, max_chars_per_line)) > max_lines: break |
|
if (entry["end"] - start_time) > max_duration_s and current_word_objects: break |
|
|
|
if j > i: |
|
prev_entry = word_level_timestamps[j-1] |
|
pause = entry["start"] - prev_entry["end"] |
|
if pause >= hard_pause_threshold: break |
|
if prev_entry["word"].endswith(('.','!','?')): break |
|
|
|
|
|
current_word_objects.append(entry) |
|
j += 1 |
|
|
|
if not current_word_objects: |
|
current_word_objects.append(word_level_timestamps[i]) |
|
j = i + 1 |
|
|
|
text = " ".join([w["word"] for w in current_word_objects]) |
|
end_time = word_level_timestamps[j - 1]["end"] |
|
|
|
|
|
draft_subtitles.append({ |
|
"start": start_time, |
|
"end": end_time, |
|
"text": text, |
|
"words": current_word_objects |
|
}) |
|
i = j |
|
|
|
|
|
if not draft_subtitles: return |
|
final_subtitles = [draft_subtitles[0]] |
|
for k in range(1, len(draft_subtitles)): |
|
prev_sub = final_subtitles[-1] |
|
current_sub = draft_subtitles[k] |
|
is_orphan = len(current_sub["text"].split()) == 1 |
|
pause_from_prev = current_sub["start"] - prev_sub["end"] |
|
|
|
if is_orphan and pause_from_prev < merge_pause_threshold: |
|
merged_text = prev_sub["text"] + " " + current_sub["text"] |
|
if len(split_line_by_char_limit(merged_text, max_chars_per_line)) <= max_lines: |
|
prev_sub["text"] = merged_text |
|
prev_sub["end"] = current_sub["end"] |
|
|
|
|
|
prev_sub["words"].extend(current_sub["words"]) |
|
continue |
|
|
|
final_subtitles.append(current_sub) |
|
|
|
final_subtitles = merge_punctuation_glitches(final_subtitles) |
|
print(final_subtitles) |
|
|
|
|
|
|
|
|
|
|
|
timestamps_data = {} |
|
|
|
|
|
with open(output_file, "w", encoding="utf-8") as f: |
|
for idx, sub in enumerate(final_subtitles, start=1): |
|
|
|
text = sub["text"].replace(" ,", ",").replace(" .", ".") |
|
formatted_lines = split_line_by_char_limit(text, max_chars_per_line) |
|
start_time_str = convert_time_to_srt_format(sub['start']) |
|
end_time_str = convert_time_to_srt_format(sub['end']) |
|
|
|
f.write(f"{idx}\n") |
|
f.write(f"{start_time_str} --> {end_time_str}\n") |
|
f.write("\n".join(formatted_lines) + "\n\n") |
|
|
|
|
|
|
|
word_data = [] |
|
for word_obj in sub["words"]: |
|
word_data.append({ |
|
"word": word_obj["word"], |
|
"start": convert_time_to_srt_format(word_obj["start"]), |
|
"end": convert_time_to_srt_format(word_obj["end"]) |
|
}) |
|
|
|
|
|
timestamps_data[str(idx)] = { |
|
"text": "\n".join(formatted_lines), |
|
"start": start_time_str, |
|
"end": end_time_str, |
|
"words": word_data |
|
} |
|
|
|
|
|
json_output_file = output_file.replace(".srt",".json") |
|
with open(json_output_file, "w", encoding="utf-8") as f_json: |
|
json.dump(timestamps_data, f_json, indent=4, ensure_ascii=False) |
|
|
|
print(f"Successfully generated SRT file: {output_file}") |
|
print(f"Successfully generated JSON file: {json_output_file}") |
|
return json_output_file |
|
|
|
def write_subtitles_to_file(subtitles, filename="subtitles.srt"): |
|
"""Writes a dictionary of subtitles to a standard SRT file.""" |
|
with open(filename, 'w', encoding='utf-8') as f: |
|
for id, entry in subtitles.items(): |
|
if entry['start'] is None or entry['end'] is None: |
|
print(f"Skipping subtitle ID {id} due to missing timestamps.") |
|
continue |
|
start_time = convert_time_to_srt_format(entry['start']) |
|
end_time = convert_time_to_srt_format(entry['end']) |
|
f.write(f"{id}\n") |
|
f.write(f"{start_time} --> {end_time}\n") |
|
f.write(f"{entry['text']}\n\n") |
|
|
|
def word_level_srt(words_timestamp, srt_path="word_level_subtitle.srt", shorts=False): |
|
"""Generates an SRT file with one word per subtitle entry.""" |
|
punctuation = re.compile(r'[.,!?;:"\ββ_~^+*|]') |
|
with open(srt_path, 'w', encoding='utf-8') as srt_file: |
|
for i, word_info in enumerate(words_timestamp, start=1): |
|
start = convert_time_to_srt_format(word_info['start']) |
|
end = convert_time_to_srt_format(word_info['end']) |
|
word = re.sub(punctuation, '', word_info['word']) |
|
if word.strip().lower() == 'i': word = "I" |
|
if not shorts: word = word.replace("-", "") |
|
srt_file.write(f"{i}\n{start} --> {end}\n{word}\n\n") |
|
|
|
def generate_srt_from_sentences(sentence_timestamp, srt_path="default_subtitle.srt"): |
|
"""Generates a standard SRT file from sentence-level timestamps.""" |
|
with open(srt_path, 'w', encoding='utf-8') as srt_file: |
|
for index, sentence in enumerate(sentence_timestamp, start=1): |
|
start = convert_time_to_srt_format(sentence['start']) |
|
end = convert_time_to_srt_format(sentence['end']) |
|
srt_file.write(f"{index}\n{start} --> {end}\n{sentence['text']}\n\n") |
|
|
|
|
|
|
|
|
|
|
|
|
|
def translate_text(text, source_language, destination_language): |
|
"""Translates a single block of text using GoogleTranslator.""" |
|
source_code = LANGUAGE_CODE[source_language] |
|
target_code = LANGUAGE_CODE[destination_language] |
|
if destination_language == "Chinese": |
|
target_code = 'zh-CN' |
|
|
|
translator = GoogleTranslator(source=source_code, target=target_code) |
|
return str(translator.translate(text.strip())) |
|
|
|
def translate_subtitle(subtitles, source_language, destination_language): |
|
"""Translates the text content of a pysrt Subtitle object.""" |
|
translated_text_dump = "" |
|
for sub in subtitles: |
|
translated_text = translate_text(sub.text, source_language, destination_language) |
|
sub.text = translated_text |
|
translated_text_dump += translated_text.strip() + " " |
|
return subtitles, translated_text_dump.strip() |
|
|
|
|
|
|
|
|
|
|
|
|
|
def subtitle_maker(media_file, source_lang, target_lang): |
|
""" |
|
The main entry point to generate and optionally translate subtitles. |
|
|
|
Args: |
|
media_file (str): Path to the input media file. |
|
source_lang (str): The source language ('Automatic' for detection). |
|
target_lang (str): The target language for translation. |
|
|
|
Returns: |
|
A tuple containing paths to all generated files and the transcript text. |
|
""" |
|
|
|
try: |
|
( |
|
default_srt, custom_srt, word_srt, shorts_srt, |
|
txt_path, transcript, sentence_json,word_json,detected_lang |
|
) = whisper_subtitle(media_file, source_lang) |
|
except Exception as e: |
|
print(f"β An error occurred during transcription: {e}") |
|
return (None, None, None, None, None, None,None,None, f"Error: {e}") |
|
|
|
translated_srt_path = None |
|
if detected_lang and detected_lang != target_lang: |
|
print(f"TRANSLATING from {detected_lang} to {target_lang}") |
|
original_subs = pysrt.open(default_srt, encoding='utf-8') |
|
translated_subs, _ = translate_subtitle(original_subs, detected_lang, target_lang) |
|
base_name, ext = os.path.splitext(os.path.basename(default_srt)) |
|
translated_filename = f"{base_name}_to_{target_lang}{ext}" |
|
translated_srt_path = os.path.join(SUBTITLE_FOLDER, translated_filename) |
|
translated_subs.save(translated_srt_path, encoding='utf-8') |
|
|
|
|
|
return ( |
|
default_srt, translated_srt_path, custom_srt, word_srt, |
|
shorts_srt, txt_path,sentence_json,word_json, transcript |
|
) |
|
|
|
|
|
|
|
|
|
|
|
os.makedirs(SUBTITLE_FOLDER, exist_ok=True) |
|
os.makedirs(TEMP_FOLDER, exist_ok=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|