NeuralFalcon's picture
Update subtitle.py
d7e34bd verified
"""
A comprehensive toolkit for generating and translating subtitles from media files.
This module provides functionalities to:
1. Download AI models from Hugging Face without requiring a token.
2. Transcribe audio from media files using a high-performance Whisper model.
3. Generate multiple formats of SRT subtitles (default, professional multi-line, word-level, and shorts-style).
4. Translate subtitles into different languages.
5. Orchestrate the entire process through a simple-to-use main function.
"""
# ==============================================================================
# --- 1. IMPORTS
# ==============================================================================
import os
import re
import gc
import uuid
import math
import shutil
import string
import requests
import urllib.request
import urllib.error
import torch
import pysrt
from tqdm.auto import tqdm
from faster_whisper import WhisperModel
from deep_translator import GoogleTranslator
# ==============================================================================
# --- 2. CONSTANTS & CONFIGURATION
# ==============================================================================
# Folder paths for storing generated files and temporary audio
SUBTITLE_FOLDER = "./generated_subtitle"
TEMP_FOLDER = "./subtitle_audio"
# Mapping of language names to their ISO 639-1 codes
LANGUAGE_CODE = {
'Akan': 'aka', 'Albanian': 'sq', 'Amharic': 'am', 'Arabic': 'ar', 'Armenian': 'hy',
'Assamese': 'as', 'Azerbaijani': 'az', 'Basque': 'eu', 'Bashkir': 'ba', 'Bengali': 'bn',
'Bosnian': 'bs', 'Bulgarian': 'bg', 'Burmese': 'my', 'Catalan': 'ca', 'Chinese': 'zh',
'Croatian': 'hr', 'Czech': 'cs', 'Danish': 'da', 'Dutch': 'nl', 'English': 'en',
'Estonian': 'et', 'Faroese': 'fo', 'Finnish': 'fi', 'French': 'fr', 'Galician': 'gl',
'Georgian': 'ka', 'German': 'de', 'Greek': 'el', 'Gujarati': 'gu', 'Haitian Creole': 'ht',
'Hausa': 'ha', 'Hebrew': 'he', 'Hindi': 'hi', 'Hungarian': 'hu', 'Icelandic': 'is',
'Indonesian': 'id', 'Italian': 'it', 'Japanese': 'ja', 'Kannada': 'kn', 'Kazakh': 'kk',
'Korean': 'ko', 'Kurdish': 'ckb', 'Kyrgyz': 'ky', 'Lao': 'lo', 'Lithuanian': 'lt',
'Luxembourgish': 'lb', 'Macedonian': 'mk', 'Malay': 'ms', 'Malayalam': 'ml', 'Maltese': 'mt',
'Maori': 'mi', 'Marathi': 'mr', 'Mongolian': 'mn', 'Nepali': 'ne', 'Norwegian': 'no',
'Norwegian Nynorsk': 'nn', 'Pashto': 'ps', 'Persian': 'fa', 'Polish': 'pl', 'Portuguese': 'pt',
'Punjabi': 'pa', 'Romanian': 'ro', 'Russian': 'ru', 'Serbian': 'sr', 'Sinhala': 'si',
'Slovak': 'sk', 'Slovenian': 'sl', 'Somali': 'so', 'Spanish': 'es', 'Sundanese': 'su',
'Swahili': 'sw', 'Swedish': 'sv', 'Tamil': 'ta', 'Telugu': 'te', 'Thai': 'th',
'Turkish': 'tr', 'Ukrainian': 'uk', 'Urdu': 'ur', 'Uzbek': 'uz', 'Vietnamese': 'vi',
'Welsh': 'cy', 'Yiddish': 'yi', 'Yoruba': 'yo', 'Zulu': 'zu'
}
# ==============================================================================
# --- 3. FILE & MODEL DOWNLOADING UTILITIES
# ==============================================================================
def download_file(url, download_file_path, redownload=False):
"""Download a single file with urllib and a tqdm progress bar."""
base_path = os.path.dirname(download_file_path)
os.makedirs(base_path, exist_ok=True)
if os.path.exists(download_file_path):
if redownload:
os.remove(download_file_path)
tqdm.write(f"♻️ Redownloading: {os.path.basename(download_file_path)}")
elif os.path.getsize(download_file_path) > 0:
tqdm.write(f"βœ”οΈ Skipped (already exists): {os.path.basename(download_file_path)}")
return True
try:
request = urllib.request.urlopen(url)
total = int(request.headers.get('Content-Length', 0))
except urllib.error.URLError as e:
print(f"❌ Error: Unable to open URL: {url}")
print(f"Reason: {e.reason}")
return False
with tqdm(total=total, desc=os.path.basename(download_file_path), unit='B', unit_scale=True, unit_divisor=1024) as progress:
try:
urllib.request.urlretrieve(
url,
download_file_path,
reporthook=lambda count, block_size, total_size: progress.update(block_size)
)
except urllib.error.URLError as e:
print(f"❌ Error: Failed to download {url}")
print(f"Reason: {e.reason}")
return False
tqdm.write(f"⬇️ Downloaded: {os.path.basename(download_file_path)}")
return True
def download_model(repo_id, download_folder="./", redownload=False):
"""
Downloads all files from a Hugging Face repository using the public API,
avoiding the need for a Hugging Face token for public models.
"""
if not download_folder.strip():
download_folder = "."
api_url = f"https://huggingface.co/api/models/{repo_id}"
model_name = repo_id.split('/')[-1]
download_dir = os.path.abspath(f"{download_folder.rstrip('/')}/{model_name}")
os.makedirs(download_dir, exist_ok=True)
print(f"πŸ“‚ Download directory: {download_dir}")
try:
response = requests.get(api_url)
response.raise_for_status()
except requests.exceptions.RequestException as e:
print(f"❌ Error fetching repo info: {e}")
return None
data = response.json()
files_to_download = [f["rfilename"] for f in data.get("siblings", [])]
if not files_to_download:
print(f"⚠️ No files found in repo '{repo_id}'.")
return None
print(f"πŸ“¦ Found {len(files_to_download)} files in repo '{repo_id}'. Checking cache...")
for file in tqdm(files_to_download, desc="Processing files", unit="file"):
file_url = f"https://huggingface.co/{repo_id}/resolve/main/{file}"
file_path = os.path.join(download_dir, file)
download_file(file_url, file_path, redownload=redownload)
return download_dir
# ==============================================================================
# --- 4. CORE TRANSCRIPTION & PROCESSING LOGIC
# ==============================================================================
def get_language_name(code):
"""Retrieves the full language name from its code."""
for name, value in LANGUAGE_CODE.items():
if value == code:
return name
return None
def clean_file_name(file_path):
"""Generates a clean, unique file name to avoid path issues."""
dir_name = os.path.dirname(file_path)
base_name, extension = os.path.splitext(os.path.basename(file_path))
cleaned_base = re.sub(r'[^a-zA-Z\d]+', '_', base_name)
cleaned_base = re.sub(r'_+', '_', cleaned_base).strip('_')
random_uuid = uuid.uuid4().hex[:6]
return os.path.join(dir_name, f"{cleaned_base}_{random_uuid}{extension}")
def format_segments(segments):
"""Formats the raw segments from Whisper into structured lists."""
sentence_timestamp = []
words_timestamp = []
speech_to_text = ""
for i in segments:
text = i.text.strip()
sentence_id = len(sentence_timestamp)
sentence_timestamp.append({
"id": sentence_id,
"text": text,
"start": i.start,
"end": i.end,
"words": []
})
speech_to_text += text + " "
for word in i.words:
word_data = {
"word": word.word.strip(),
"start": word.start,
"end": word.end
}
sentence_timestamp[sentence_id]["words"].append(word_data)
words_timestamp.append(word_data)
return sentence_timestamp, words_timestamp, speech_to_text.strip()
def get_audio_file(uploaded_file):
"""Copies the uploaded media file to a temporary location for processing."""
temp_path = os.path.join(TEMP_FOLDER, os.path.basename(uploaded_file))
cleaned_path = clean_file_name(temp_path)
shutil.copy(uploaded_file, cleaned_path)
return cleaned_path
def whisper_subtitle(uploaded_file, source_language):
"""
Main transcription function. Loads the model, transcribes the audio,
and generates subtitle files.
"""
# 1. Configure device and model
device = "cuda" if torch.cuda.is_available() else "cpu"
compute_type = "float16" if torch.cuda.is_available() else "int8"
model_dir = download_model(
"deepdml/faster-whisper-large-v3-turbo-ct2",
download_folder="./",
redownload=False
)
model = WhisperModel(model_dir, device=device, compute_type=compute_type)
# model = WhisperModel("deepdml/faster-whisper-large-v3-turbo-ct2",device=device, compute_type=compute_type)
# 2. Process audio file
audio_file_path = get_audio_file(uploaded_file)
# 3. Transcribe
detected_language = source_language
if source_language == "Automatic":
segments, info = model.transcribe(audio_file_path, word_timestamps=True)
detected_lang_code = info.language
detected_language = get_language_name(detected_lang_code)
else:
lang_code = LANGUAGE_CODE[source_language]
segments, _ = model.transcribe(audio_file_path, word_timestamps=True, language=lang_code)
sentence_timestamps, word_timestamps, transcript_text = format_segments(segments)
# 4. Cleanup
if os.path.exists(audio_file_path):
os.remove(audio_file_path)
del model
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# 5. Prepare output file paths
base_filename = os.path.splitext(os.path.basename(uploaded_file))[0][:30]
srt_base = f"{SUBTITLE_FOLDER}/{base_filename}_{detected_language}.srt"
clean_srt_path = clean_file_name(srt_base)
txt_path = clean_srt_path.replace(".srt", ".txt")
word_srt_path = clean_srt_path.replace(".srt", "_word_level.srt")
custom_srt_path = clean_srt_path.replace(".srt", "_Multiline.srt")
shorts_srt_path = clean_srt_path.replace(".srt", "_shorts.srt")
# 6. Generate all subtitle files
generate_srt_from_sentences(sentence_timestamps, srt_path=clean_srt_path)
word_level_srt(word_timestamps, srt_path=word_srt_path)
shorts_json=write_sentence_srt(
word_timestamps, output_file=shorts_srt_path, max_lines=1,
max_duration_s=2.0, max_chars_per_line=17
)
sentence_json=write_sentence_srt(
word_timestamps, output_file=custom_srt_path, max_lines=2,
max_duration_s=7.0, max_chars_per_line=38
)
with open(txt_path, 'w', encoding='utf-8') as f:
f.write(transcript_text)
return (
clean_srt_path, custom_srt_path, word_srt_path, shorts_srt_path,
txt_path, transcript_text, sentence_json,shorts_json,detected_language
)
# ==============================================================================
# --- 5. SUBTITLE GENERATION & FORMATTING
# ==============================================================================
def convert_time_to_srt_format(seconds):
"""Converts seconds to the standard SRT time format (HH:MM:SS,ms)."""
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
secs = int(seconds % 60)
milliseconds = round((seconds - int(seconds)) * 1000)
if milliseconds == 1000:
milliseconds = 0
secs += 1
if secs == 60:
secs, minutes = 0, minutes + 1
if minutes == 60:
minutes, hours = 0, hours + 1
return f"{hours:02}:{minutes:02}:{secs:02},{milliseconds:03}"
def split_line_by_char_limit(text, max_chars_per_line=38):
"""Splits a string into multiple lines based on a character limit."""
words = text.split()
lines = []
current_line = ""
for word in words:
if not current_line:
current_line = word
elif len(current_line + " " + word) <= max_chars_per_line:
current_line += " " + word
else:
lines.append(current_line)
current_line = word
if current_line:
lines.append(current_line)
return lines
def merge_punctuation_glitches(subtitles):
"""Cleans up punctuation artifacts at the boundaries of subtitle entries."""
if not subtitles:
return []
cleaned = [subtitles[0]]
for i in range(1, len(subtitles)):
prev = cleaned[-1]
curr = subtitles[i]
prev_text = prev["text"].rstrip()
curr_text = curr["text"].lstrip()
match = re.match(r'^([,.:;!?]+)(\s*)(.+)', curr_text)
if match:
punct, _, rest = match.groups()
if not prev_text.endswith(tuple(punct)):
prev["text"] = prev_text + punct
curr_text = rest.strip()
unwanted_chars = ['"', 'β€œ', '”', ';', ':']
for ch in unwanted_chars:
curr_text = curr_text.replace(ch, '')
curr_text = curr_text.strip()
if not curr_text or re.fullmatch(r'[.,!?]+', curr_text):
prev["end"] = curr["end"]
continue
curr["text"] = curr_text
prev["text"] = prev["text"].replace('"', '').replace('β€œ', '').replace('”', '')
cleaned.append(curr)
return cleaned
import json
def write_sentence_srt(
word_level_timestamps, output_file="subtitles_professional.srt", max_lines=2,
max_duration_s=7.0, max_chars_per_line=38, hard_pause_threshold=0.5,
merge_pause_threshold=0.4
):
"""Creates professional-grade SRT files and a corresponding timestamp.json file."""
if not word_level_timestamps:
return
# Phase 1: Generate draft subtitles based on timing and length rules
draft_subtitles = []
i = 0
while i < len(word_level_timestamps):
start_time = word_level_timestamps[i]["start"]
# We'll now store the full word objects, not just the text
current_word_objects = []
j = i
while j < len(word_level_timestamps):
entry = word_level_timestamps[j]
# Create potential text from the word objects
potential_words = [w["word"] for w in current_word_objects] + [entry["word"]]
potential_text = " ".join(potential_words)
if len(split_line_by_char_limit(potential_text, max_chars_per_line)) > max_lines: break
if (entry["end"] - start_time) > max_duration_s and current_word_objects: break
if j > i:
prev_entry = word_level_timestamps[j-1]
pause = entry["start"] - prev_entry["end"]
if pause >= hard_pause_threshold: break
if prev_entry["word"].endswith(('.','!','?')): break
# Append the full word object
current_word_objects.append(entry)
j += 1
if not current_word_objects:
current_word_objects.append(word_level_timestamps[i])
j = i + 1
text = " ".join([w["word"] for w in current_word_objects])
end_time = word_level_timestamps[j - 1]["end"]
# Include the list of word objects in our draft subtitle
draft_subtitles.append({
"start": start_time,
"end": end_time,
"text": text,
"words": current_word_objects
})
i = j
# Phase 2: Post-process to merge single-word "orphan" subtitles
if not draft_subtitles: return
final_subtitles = [draft_subtitles[0]]
for k in range(1, len(draft_subtitles)):
prev_sub = final_subtitles[-1]
current_sub = draft_subtitles[k]
is_orphan = len(current_sub["text"].split()) == 1
pause_from_prev = current_sub["start"] - prev_sub["end"]
if is_orphan and pause_from_prev < merge_pause_threshold:
merged_text = prev_sub["text"] + " " + current_sub["text"]
if len(split_line_by_char_limit(merged_text, max_chars_per_line)) <= max_lines:
prev_sub["text"] = merged_text
prev_sub["end"] = current_sub["end"]
# Merge the word-level data as well
prev_sub["words"].extend(current_sub["words"])
continue
final_subtitles.append(current_sub)
final_subtitles = merge_punctuation_glitches(final_subtitles)
print(final_subtitles)
# ==============================================================================
# NEW CODE BLOCK: Generate JSON data and write files
# ==============================================================================
# This dictionary will hold the data for our JSON file
timestamps_data = {}
# Phase 3: Write the final SRT file (and prepare JSON data)
with open(output_file, "w", encoding="utf-8") as f:
for idx, sub in enumerate(final_subtitles, start=1):
# --- SRT Writing (Unchanged) ---
text = sub["text"].replace(" ,", ",").replace(" .", ".")
formatted_lines = split_line_by_char_limit(text, max_chars_per_line)
start_time_str = convert_time_to_srt_format(sub['start'])
end_time_str = convert_time_to_srt_format(sub['end'])
f.write(f"{idx}\n")
f.write(f"{start_time_str} --> {end_time_str}\n")
f.write("\n".join(formatted_lines) + "\n\n")
# --- JSON Data Population (New) ---
# Create the list of word dictionaries for the current subtitle
word_data = []
for word_obj in sub["words"]:
word_data.append({
"word": word_obj["word"],
"start": convert_time_to_srt_format(word_obj["start"]),
"end": convert_time_to_srt_format(word_obj["end"])
})
# Add the complete entry to our main dictionary
timestamps_data[str(idx)] = {
"text": "\n".join(formatted_lines),
"start": start_time_str,
"end": end_time_str,
"words": word_data
}
# Write the collected data to the JSON file
json_output_file = output_file.replace(".srt",".json")
with open(json_output_file, "w", encoding="utf-8") as f_json:
json.dump(timestamps_data, f_json, indent=4, ensure_ascii=False)
print(f"Successfully generated SRT file: {output_file}")
print(f"Successfully generated JSON file: {json_output_file}")
return json_output_file
def write_subtitles_to_file(subtitles, filename="subtitles.srt"):
"""Writes a dictionary of subtitles to a standard SRT file."""
with open(filename, 'w', encoding='utf-8') as f:
for id, entry in subtitles.items():
if entry['start'] is None or entry['end'] is None:
print(f"Skipping subtitle ID {id} due to missing timestamps.")
continue
start_time = convert_time_to_srt_format(entry['start'])
end_time = convert_time_to_srt_format(entry['end'])
f.write(f"{id}\n")
f.write(f"{start_time} --> {end_time}\n")
f.write(f"{entry['text']}\n\n")
def word_level_srt(words_timestamp, srt_path="word_level_subtitle.srt", shorts=False):
"""Generates an SRT file with one word per subtitle entry."""
punctuation = re.compile(r'[.,!?;:"\–—_~^+*|]')
with open(srt_path, 'w', encoding='utf-8') as srt_file:
for i, word_info in enumerate(words_timestamp, start=1):
start = convert_time_to_srt_format(word_info['start'])
end = convert_time_to_srt_format(word_info['end'])
word = re.sub(punctuation, '', word_info['word'])
if word.strip().lower() == 'i': word = "I"
if not shorts: word = word.replace("-", "")
srt_file.write(f"{i}\n{start} --> {end}\n{word}\n\n")
def generate_srt_from_sentences(sentence_timestamp, srt_path="default_subtitle.srt"):
"""Generates a standard SRT file from sentence-level timestamps."""
with open(srt_path, 'w', encoding='utf-8') as srt_file:
for index, sentence in enumerate(sentence_timestamp, start=1):
start = convert_time_to_srt_format(sentence['start'])
end = convert_time_to_srt_format(sentence['end'])
srt_file.write(f"{index}\n{start} --> {end}\n{sentence['text']}\n\n")
# ==============================================================================
# --- 6. TRANSLATION UTILITIES
# ==============================================================================
def translate_text(text, source_language, destination_language):
"""Translates a single block of text using GoogleTranslator."""
source_code = LANGUAGE_CODE[source_language]
target_code = LANGUAGE_CODE[destination_language]
if destination_language == "Chinese":
target_code = 'zh-CN'
translator = GoogleTranslator(source=source_code, target=target_code)
return str(translator.translate(text.strip()))
def translate_subtitle(subtitles, source_language, destination_language):
"""Translates the text content of a pysrt Subtitle object."""
translated_text_dump = ""
for sub in subtitles:
translated_text = translate_text(sub.text, source_language, destination_language)
sub.text = translated_text
translated_text_dump += translated_text.strip() + " "
return subtitles, translated_text_dump.strip()
# ==============================================================================
# --- 7. MAIN ORCHESTRATOR FUNCTION
# ==============================================================================
def subtitle_maker(media_file, source_lang, target_lang):
"""
The main entry point to generate and optionally translate subtitles.
Args:
media_file (str): Path to the input media file.
source_lang (str): The source language ('Automatic' for detection).
target_lang (str): The target language for translation.
Returns:
A tuple containing paths to all generated files and the transcript text.
"""
try:
(
default_srt, custom_srt, word_srt, shorts_srt,
txt_path, transcript, sentence_json,word_json,detected_lang
) = whisper_subtitle(media_file, source_lang)
except Exception as e:
print(f"❌ An error occurred during transcription: {e}")
return (None, None, None, None, None, None,None,None, f"Error: {e}")
translated_srt_path = None
if detected_lang and detected_lang != target_lang:
print(f"TRANSLATING from {detected_lang} to {target_lang}")
original_subs = pysrt.open(default_srt, encoding='utf-8')
translated_subs, _ = translate_subtitle(original_subs, detected_lang, target_lang)
base_name, ext = os.path.splitext(os.path.basename(default_srt))
translated_filename = f"{base_name}_to_{target_lang}{ext}"
translated_srt_path = os.path.join(SUBTITLE_FOLDER, translated_filename)
translated_subs.save(translated_srt_path, encoding='utf-8')
return (
default_srt, translated_srt_path, custom_srt, word_srt,
shorts_srt, txt_path,sentence_json,word_json, transcript
)
# ==============================================================================
# --- 8. INITIALIZATION
# ==============================================================================
os.makedirs(SUBTITLE_FOLDER, exist_ok=True)
os.makedirs(TEMP_FOLDER, exist_ok=True)
# from subtitle import subtitle_maker
# media_file = "video.mp4"
# source_lang = "English"
# target_lang = "English"
# default_srt, translated_srt_path, custom_srt, word_srt, shorts_srt, txt_path,sentence_json,word_json, transcript= subtitle_maker(
# media_file, source_lang, target_lang
# )
# If source_lang and target_lang are the same, translation will be skipped.
# default_srt -> Original subtitles generated directly by Whisper-Large-V3-Turbo-CT2
# translated_srt -> Translated subtitles (only generated if source_lang β‰  target_lang,
# e.g., English β†’ Hindi)
# custom_srt -> Modified version of default subtitles with shorter segments
# (better readability for horizontal videos, Maximum 38 characters per segment. )
# word_srt -> Word-level timestamps (useful for creating YouTube Shorts/Reels)
# shorts_srt -> Optimized subtitles for vertical videos (displays 3–4 words at a time , Maximum 17 characters per segment.)
# txt_path -> Full transcript as plain text (useful for video summarization or for asking questions about the video or audio data with other LLM tools)
# sentence_json,word_json --> To Generate .ass file later
# transcript -> Transcript text directly returned by the function, if you just need the transcript
# All functionality is contained in a single file, making it portable
# and reusable across multiple projects for different purposes.