Spaces:
No application file
No application file
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from tensorflow.keras.models import load_model
|
4 |
+
from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
5 |
+
import numpy as np
|
6 |
+
import pickle
|
7 |
+
|
8 |
+
# Disable oneDNN custom operations
|
9 |
+
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
10 |
+
|
11 |
+
# Ensure TensorFlow uses CPU
|
12 |
+
import tensorflow as tf
|
13 |
+
tf.config.set_visible_devices([], 'GPU')
|
14 |
+
|
15 |
+
# Load the saved model
|
16 |
+
@st.cache_resource
|
17 |
+
def load_keras_model():
|
18 |
+
return load_model("best_model.h5")
|
19 |
+
|
20 |
+
model = load_keras_model()
|
21 |
+
|
22 |
+
# Load the class labels from a pickle file
|
23 |
+
with open("mod_class_labels.pkl", "rb") as f:
|
24 |
+
class_indices = pickle.load(f)
|
25 |
+
|
26 |
+
# Ensure class_indices is a dictionary
|
27 |
+
if isinstance(class_indices, list):
|
28 |
+
class_indices = {i: label for i, label in enumerate(class_indices)}
|
29 |
+
|
30 |
+
# Function to preprocess the image
|
31 |
+
def preprocess_image(image):
|
32 |
+
image = load_img(image, target_size=(256, 256)) # Load the image with target size
|
33 |
+
image = img_to_array(image) # Convert the image to array
|
34 |
+
image = np.expand_dims(image, axis=0) # Expand dimensions to match the input shape
|
35 |
+
image = image / 255.0 # Rescale the image
|
36 |
+
return image
|
37 |
+
|
38 |
+
# Function to make a prediction and get the label
|
39 |
+
def predict_image(image):
|
40 |
+
image = preprocess_image(image)
|
41 |
+
prediction = model.predict(image)
|
42 |
+
predicted_class = np.argmax(prediction, axis=1)[0]
|
43 |
+
predicted_label = class_indices[predicted_class]
|
44 |
+
return predicted_label
|
45 |
+
|
46 |
+
# Streamlit App
|
47 |
+
st.title("Rice Leaf Disease Classification")
|
48 |
+
|
49 |
+
st.write("Upload an image of a rice leaf and the model will predict its disease category.")
|
50 |
+
|
51 |
+
# File uploader
|
52 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
53 |
+
|
54 |
+
if uploaded_file is not None:
|
55 |
+
# Display the uploaded image
|
56 |
+
image = load_img(uploaded_file, target_size=(256, 256))
|
57 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
58 |
+
st.write("")
|
59 |
+
st.write("Classifying...")
|
60 |
+
|
61 |
+
# Make a prediction
|
62 |
+
predicted_label = predict_image(uploaded_file)
|
63 |
+
st.write(f"Predicted label: {predicted_label}")
|