Netcodez's picture
Application file update
4e072d5
import streamlit as st
import numpy as np
import pickle
# Load your pre-trained RandomForestRegressor model
with open("random_forest_model.pkl", "rb") as file:
model = pickle.load(file)
# Set the title of the app
st.title("Predicting Temperature in London")
# header and description
st.header("Predict Weather Conditions Based on Various Features")
# link to the GitHub repository
st.markdown("[GitHub Repo](https://github.com/Netcodez/Climate-Prediction-Pipeline)")
st.write(
"""
This application uses a Random Forest Regression model to predict the mean temperature in London.
Please enter the required features below to get a prediction.
"""
)
feature_names = [
"Cloud Cover (oktas)",
"Sunshine (hrs)",
"Global Radiation (W/m²)",
"Max Temp (°C)",
"Min Temp (°C)",
"Precipitation (mm)",
"Pressure (Pa)",
"Snow Depth (cm)",
"Month",
]
# feature names with units of measurement and short descriptions
feature_info = {
"Cloud Cover (oktas)": {
"range": (0.0, 9.0),
"description": "Measurement of cloud cover in oktas",
},
"Sunshine (hrs)": {
"range": (0.0, 24.0),
"description": "Measurement of sunshine in hours per day",
},
"Global Radiation (W/m²)": {
"range": (0.0, 500.0),
"description": "Measurement of global radiation in Watt per " "square meter",
},
"Max Temp (°C)": {
"range": (-10.0, 40.0),
"description": "Maximum temperature recorded in degrees Celsius",
},
"Min Temp (°C)": {
"range": (-10.0, 40.0),
"description": "Minimum temperature recorded in degrees Celsius",
},
"Precipitation (mm)": {
"range": (0.0, 100.0),
"description": "Measurement of precipitation in millimeters",
},
"Pressure (Pa)": {
"range": (90000.0, 110000.0),
"description": "Measurement of pressure in Pascals",
},
"Snow Depth (cm)": {
"range": (0.0, 50.0),
"description": "Measurement of snow depth in centimeters",
},
"Month": {"range": (1, 12), "description": "Month of observation"},
}
feature_values = []
for feature_name, info in feature_info.items():
min_val, max_val = info["range"]
label = f"{feature_name}: {info['description']}"
feature_values.append(st.slider(label, min_val, max_val, min_val))
# Prediction button
if st.button("Predict"):
input_data = np.array(feature_values).reshape(1, -1)
prediction = model.predict(input_data)
st.write(f"Mean Temperature in London is predicted to be {prediction[0]:.2f}°C")