Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
from transformers import pipeline | |
from pytube import YouTube | |
from datasets import Dataset, Audio | |
from moviepy.editor import AudioFileClip | |
# import googletrans # googletrans api | |
# from googletrans import Translator # googletrans api | |
# from google_trans_new import google_translator # google_trans_new api | |
from deep_translator import MicrosoftTranslator # GoogleTranslator | |
pipe = pipeline(model="Neprox/model") | |
# translator = google_translator() # google_trans_new api | |
# translator = Translator() # googletrans api | |
# Get languages available for translation | |
#languages = [] | |
#for code, name in googletrans.LANGUAGES.items(): | |
# language = f"{name.capitalize()} ({code})" | |
# languages.append(language) | |
languages = [ | |
"French (fr)", | |
"English (en)", | |
"German (de)", | |
"Spanish (es)", | |
] | |
def download_from_youtube(url): | |
""" | |
Downloads the video from the given YouTube URL and returns the path to the audio file. | |
""" | |
streams = YouTube(url).streams.filter(only_audio=True, file_extension='mp4') | |
fpath = streams.first().download() | |
return fpath | |
def get_timestamp(seconds): | |
""" | |
Creates %M:%S timestamp from seconds. | |
""" | |
minutes = int(seconds / 60) | |
seconds = int(seconds % 60) | |
return f"{str(minutes).zfill(2)}:{str(seconds).zfill(2)}" | |
def divide_into_30s_segments(audio_fpath, seconds_max): | |
""" | |
Divides the audio file into 30s segments and returns the paths to the segments and the start times of the segments. | |
:param audio_fpath: Path to the audio file. | |
:param seconds_max: Maximum number of seconds to consider. If the audio file is longer than this, it will be truncated. | |
""" | |
if not os.path.exists("segmented_audios"): | |
os.makedirs("segmented_audios") | |
sound = AudioFileClip(audio_fpath) | |
n_full_segments = int(sound.duration / 30) | |
len_last_segment = sound.duration % 30 | |
max_segments = int(seconds_max / 30) | |
if n_full_segments > max_segments: | |
n_full_segments = max_segments | |
len_last_segment = 0 | |
segment_paths = [] | |
segment_start_times = [] | |
segments_available = n_full_segments + 1 | |
for i in range(min(segments_available, max_segments)): | |
start = i * 30 | |
# Skip last segment if it is smaller than two seconds | |
is_last_segment = i == n_full_segments | |
if is_last_segment and not len_last_segment > 2: | |
continue | |
elif is_last_segment: | |
end = start + len_last_segment | |
else: | |
end = (i + 1) * 30 | |
segment_path = os.path.join("segmented_audios", f"segment_{i}.wav") | |
segment = sound.subclip(start, end) | |
segment.write_audiofile(segment_path) | |
segment_paths.append(segment_path) | |
segment_start_times.append(start) | |
return segment_paths, segment_start_times | |
def get_translation(text, target_lang="English (en)"): | |
""" | |
Translates the given Swedish text to the language specified. | |
""" | |
lang_code = target_lang.split(" ")[-1][1:-1] | |
return MicrosoftTranslator(source='sv', target=lang_code).translate(text) | |
# return translator.translate(text, lang_tgt=lang_code) # googletrans_new api | |
# result = translator.translate(text, lang_code, 'sv') # googletrans api | |
# return result.text # googletrans api | |
def translate(audio, url, seconds_max, target_lang): | |
""" | |
Translates a YouTube video if a url is specified and returns the transcription. | |
If not url is specified, it translates the audio file as passed by Gradio. | |
:param audio: Audio file as passed by Gradio. Only used if no url is specified. | |
:param url: URL of the YouTube video to translate. | |
:param seconds_max: Maximum number of seconds to consider. If the audio file is longer than this, it will be truncated. | |
""" | |
if url: | |
fpath = download_from_youtube(url) | |
segment_paths, segment_start_times = divide_into_30s_segments(fpath, seconds_max) | |
audio_dataset = Dataset.from_dict({"audio": segment_paths}).cast_column("audio", Audio(sampling_rate=16000)) | |
pred = pipe(audio_dataset["audio"]) | |
text = "" | |
n_segments = len(segment_start_times) | |
for i, (seconds, output) in enumerate(zip(segment_start_times, pred)): | |
text += f"[Segment {i+1}/{n_segments}, start time {get_timestamp(seconds)}]\n" | |
text += f"{output['text']}\n" | |
text += f"[Translation ({target_lang})]\n" | |
text += f"{get_translation(output['text'], target_lang)}\n\n" | |
return text | |
else: | |
text = pipe(audio)["text"] | |
return text | |
iface = gr.Interface( | |
fn=translate, | |
inputs=[ | |
gr.Audio(source="microphone", type="filepath", label="Translate from Microphone"), | |
gr.Text(max_lines=1, placeholder="Enter YouTube Link with Swedish speech to be translated", label="Translate from YouTube URL"), | |
gr.Slider(minimum=30, maximum=300, value=30, step=30, label="Number of seconds to translate from YouTube URL"), | |
gr.Dropdown(languages, label="Target language") | |
], | |
outputs="text", | |
title="Whisper Small Swedish", | |
description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model.", | |
) | |
iface.launch() | |