from transformers import TFAutoModelForSequenceClassification, AutoTokenizer | |
model_name = "textattack/bert-base-uncased-rotten-tomatoes" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = TFAutoModelForSequenceClassification.from_pretrained(model_name) | |
text = "This is a positive review." | |
inputs = tokenizer(text, return_tensors="tf") | |
outputs = model(inputs) | |
scores = tf.nn.softmax(outputs.logits, axis=1).numpy()[0] | |
positive_score = scores[1] | |
negative_score = scores[0] | |