kawaiiAI / app.py
Nepmods's picture
Update app.py
6b56e9f
raw
history blame contribute delete
483 Bytes
from transformers import TFAutoModelForSequenceClassification, AutoTokenizer
model_name = "textattack/bert-base-uncased-rotten-tomatoes"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
text = "This is a positive review."
inputs = tokenizer(text, return_tensors="tf")
outputs = model(inputs)
scores = tf.nn.softmax(outputs.logits, axis=1).numpy()[0]
positive_score = scores[1]
negative_score = scores[0]