gradio_app / gradio_app.py
dupuyta's picture
Upload folder using huggingface_hub
8e2b48f
raw
history blame
7.61 kB
import gradio as gr
import numpy as np
import random
# import torch
# from langchain import HuggingFacePipeline
# from langchain.chains import LLMChain, RetrievalQA
# from langchain.document_loaders import (
# DirectoryLoader,
# PyPDFLoader,
# TextLoader,
# UnstructuredPDFLoader,
# )
# from langchain.embeddings import HuggingFaceEmbeddings, LlamaCppEmbeddings
# from langchain.llms import LlamaCpp
# from langchain.prompts import PromptTemplate
# from langchain.text_splitter import (
# CharacterTextSplitter,
# RecursiveCharacterTextSplitter,
# )
# from langchain.vectorstores import Chroma
# from PIL import Image
def file_upload(input_file):
# Process the uploaded file
if input_file is not None:
# Save the uploaded file or perform any desired operations
file_path = "/tmp/file.pdf"
content = input_file.read()
try:
with open(file_path, 'wb') as file:
file.write(content)
return {error_box: gr.Textbox(label="Completed",
value=f"File uploaded successfully in {file_path}.", visible=True)}
except Exception as e:
return {error_box: gr.Textbox(label="Error",
value=f"Error occurred while writing the file: {e}", visible=True)}
def respond(message, chat_history):
#No LLM here, just respond with a random pre-made message
bot_message = random.choice(["Tell me more about it",
"Cool, but I'm not interested",
"Hmmmm, ok then"])
chat_history.append((message, bot_message))
return "", chat_history
# Gradio interface
def qa_bot(pdf_file, question):
texts = load_docs(pdf_file)
model = setup_dbqa(texts)
answer = model({'query': question})
return f"Question: {answer['query']}\nAnswer: {answer['result']}\nSource documents: {answer['source_documents']}"
# Helper function to load documents from PDF files
def load_docs(file_path):
loader = DirectoryLoader(file_path,
glob="*.pdf",
loader_cls=UnstructuredPDFLoader)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000,
chunk_overlap=0,
length_function=len,)
texts = text_splitter.split_documents(documents)
return texts
# Helper function to set up the question-answering model
def setup_dbqa(texts):
print("Setting up DBQA ...")
llm = HuggingFacePipeline.from_model_id(
model_id="NousResearch/Llama-2-13b-chat-hf",
task="text-generation",
model_kwargs={
"max_length": 1500, "load_in_8bit": True},
)
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',
model_kwargs={'device': 'cpu'})
vectorstore = Chroma.from_documents(texts, embeddings, persist_directory="vectorstore")
prompt = set_qa_prompt()
return build_retrieval_qa(llm, prompt, vectorstore)
def set_qa_prompt():
# set prompt template
prompt_template = """<s>[INST] <<SYS>> Use the following pieces of context closed between $ to answer the question closed between |. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
${context}$ <</SYS>>
Question: |{question}|
Answer:[/INST]</s>"""
prompt = PromptTemplate(
template=prompt_template, input_variables=["context", "question"]
)
return prompt
# Build RetrievalQA object
def build_retrieval_qa(_llm, _prompt, _vectorstore):
dbqa = RetrievalQA.from_chain_type(llm=_llm,
chain_type='stuff',
retriever=_vectorstore.as_retriever(search_kwargs={'k': 3}),
return_source_documents=True,
chain_type_kwargs={'prompt': _prompt})
return dbqa
if __name__ == "__main__":
# How to RUN code ==> gradio gradio_app.py
gr.themes.builder()
# # Define text and title information
# title1 = "## QA App"
# title2 = " ## Gradio QA Bot"
# intro = """
# Welcome! This is not just any bot, it's a special one equipped with state-of-the-art natural language processing capabilities, and ready to answer your queries.
# Ready to explore? Let's get started!
# * Step 1: Upload a PDF document.
# * Step 2: Type in a question related to your document's content.
# * Step 3: Get your answer!
# Push clear cache before uploading a new doc!
# """
# about = """
# ## About
# This app is an LLM-powered chatbot built using:
# - [Streamlit](<https://streamlit.io/>)
# - [HugChat](<https://github.com/Soulter/hugging-chat-api>)
# - Chat Model = llama2-chat-hf 7B
# - Retreiver model = all-MiniLM-L6-v2
# 💡 Note: No API key required!
# """
# # Define theme ==> see gr.themes.builder()
# theme = gr.themes.Soft(
# primary_hue="green",
# secondary_hue="blue",
# neutral_hue="indigo"
# ).set(
# background_fill_primary='*primary_50',
# shadow_drop='*shadow_spread',
# button_border_width='*block_border_width',
# button_border_width_dark='*block_label_border_width'
# )
# with gr.Blocks(theme=theme) as demo:
# with gr.Row():
# with gr.Column(scale=2, min_width=400):
# title1_gr= gr.Markdown(title1)
# intro_gr = gr.Markdown(intro)
# # Create a Gradio interface with a file upload input
# error_box = gr.Textbox(label="Error", visible=False)
# # upload_button = gr.Interface(fn=file_upload,
# # inputs=gr.File(),
# # outputs=error_box,
# # description="Drag and drop your document here")
# upload_button = gr.UploadButton("Drag and drop your document here",
# size="lg", scale=3, min_width=240,
# file_types=["pdf"])
# upload_button.upload(file_upload, upload_button, error_box)
# with gr.Column(scale=2, min_width=800):
# title2_gr = gr.Markdown(title2)
# chatbot = gr.Chatbot(label="Bot", height=500)
# msg = gr.Textbox(label="User", placeholder="Ask a question about the uploaded PDF document.")
# chatbot_btn = gr.Button("Submit")
# clear = gr.ClearButton(components=[msg, chatbot], value="Clear console")
# chatbot_btn.click(respond, inputs=[msg, chatbot], outputs=[msg, chatbot])
# with gr.Column(scale=3, min_width=600):
# with gr.Row():
# about_gr = gr.Markdown(about)
# logo_gr = gr.Markdown(""" </br> </br>
# <img src="file/logo_neovision.png" alt="logo" style="width:600px;"/>""")
# # gr.Image("./logo_neovision.png")
# gr.close_all()
# demo.launch(share=True, enable_queue=True)