Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import networkx as nx
|
| 3 |
+
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import numpy as np
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
|
| 8 |
+
import io
|
| 9 |
+
|
| 10 |
+
import base64
|
| 11 |
+
|
| 12 |
+
from sklearn.datasets import make_blobs, make_circles
|
| 13 |
+
from sklearn.preprocessing import StandardScaler
|
| 14 |
+
from sklearn.model_selection import train_test_split
|
| 15 |
+
|
| 16 |
+
from mlxtend.plotting import plot_decision_regions
|
| 17 |
+
|
| 18 |
+
import keras
|
| 19 |
+
from keras.optimizers import SGD
|
| 20 |
+
from keras.models import Sequential
|
| 21 |
+
from keras.layers import Input, Dense
|
| 22 |
+
from keras.losses import BinaryCrossentropy
|
| 23 |
+
from keras.regularizers import l2, l1
|
| 24 |
+
|
| 25 |
+
st.set_page_config(layout='wide')
|
| 26 |
+
|
| 27 |
+
def encode_image(image_path):
|
| 28 |
+
with open(image_path, "rb") as image_file:
|
| 29 |
+
return base64.b64encode(image_file.read()).decode()
|
| 30 |
+
|
| 31 |
+
def add_bg_from_local(image_file):
|
| 32 |
+
encoded_string = encode_image(image_file)
|
| 33 |
+
st.markdown(
|
| 34 |
+
f"""
|
| 35 |
+
<style>
|
| 36 |
+
.stApp {{
|
| 37 |
+
background-image: url(data:image/png;base64,{encoded_string});
|
| 38 |
+
background-size: cover;
|
| 39 |
+
background-position: center;
|
| 40 |
+
background-repeat: no-repeat;
|
| 41 |
+
background-attachment: fixed;
|
| 42 |
+
}}
|
| 43 |
+
</style>
|
| 44 |
+
""",
|
| 45 |
+
unsafe_allow_html=True
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
add_bg_from_local("Images/bkg12.jpg")
|
| 49 |
+
|
| 50 |
+
# Session state for tracking training process
|
| 51 |
+
for key, value in {
|
| 52 |
+
"training": False,
|
| 53 |
+
"num_hidden_layers": 0,
|
| 54 |
+
"hidden_layer_neurons": [],
|
| 55 |
+
"prev_params": {},
|
| 56 |
+
}.items():
|
| 57 |
+
if key not in st.session_state:
|
| 58 |
+
st.session_state[key] = value
|
| 59 |
+
|
| 60 |
+
def reset_session():
|
| 61 |
+
st.session_state.clear()
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
st.title("Neural Network Playground")
|
| 65 |
+
|
| 66 |
+
# Sidebar for paramters
|
| 67 |
+
st.sidebar.title("Configure & Train Model")
|
| 68 |
+
problem_type = st.sidebar.selectbox("Problem Type", ["Classification",]) #"Regression"])
|
| 69 |
+
dataset_type = None
|
| 70 |
+
if problem_type == "Classification":
|
| 71 |
+
dataset_type = st.sidebar.selectbox("Select Dataset Type", ["Circle", "Gaussian", "Exclusive OR"])
|
| 72 |
+
# else:
|
| 73 |
+
# dataset_type = st.sidebar.selectbox("Select Dataset Type", ["Plane", "Gaussian Plane"])
|
| 74 |
+
col1, col2 = st.sidebar.columns(2)
|
| 75 |
+
with col1:
|
| 76 |
+
learning_rate = st.selectbox("Learning Rate", [0.00001,0.0001,0.001,0.01,0.03,0.1,0.3,1,3,10])
|
| 77 |
+
with col2:
|
| 78 |
+
activation_function = st.selectbox("Activation Function", ["ReLU", "Sigmoid", "Tanh"])
|
| 79 |
+
|
| 80 |
+
col1, col2 = st.sidebar.columns(2)
|
| 81 |
+
with col1:
|
| 82 |
+
regularization_type = st.selectbox("Regularization", ["None", "L1", "L2"])
|
| 83 |
+
with col2:
|
| 84 |
+
regularization_rate = st.selectbox("Regularization Rate", [0.0,0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10], disabled=(regularization_type == "None"))
|
| 85 |
+
|
| 86 |
+
train_to_test_ratio = st.sidebar.slider("Train-to-Test Ratio (%)", 10, 90, 20, 10) / 100
|
| 87 |
+
noise_level_slider = st.sidebar.slider("Noise Level", 0, 50, step=5)
|
| 88 |
+
batch_size = st.sidebar.slider("Batch Size", 1, 30, 10)
|
| 89 |
+
|
| 90 |
+
if st.sidebar.button("🔄 Reset Session"):
|
| 91 |
+
reset_session()
|
| 92 |
+
st.rerun()
|
| 93 |
+
|
| 94 |
+
# min noise
|
| 95 |
+
min_noise = 0.09
|
| 96 |
+
|
| 97 |
+
# Scaling the noise level to range [0.02, 0.2]
|
| 98 |
+
noise_level = min_noise + (noise_level_slider / 50) * (0.2 - min_noise)
|
| 99 |
+
|
| 100 |
+
# Store current parameter values in a dictionary
|
| 101 |
+
current_params = {
|
| 102 |
+
"dataset_type": dataset_type,
|
| 103 |
+
"learning_rate": learning_rate,
|
| 104 |
+
"regularization_type": regularization_type,
|
| 105 |
+
"regularization_rate": regularization_rate,
|
| 106 |
+
"activation_function": activation_function,
|
| 107 |
+
"train_to_test_ratio": train_to_test_ratio,
|
| 108 |
+
"batch_size": batch_size,
|
| 109 |
+
"noise_level": noise_level
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
gaussian_noise = 2.0 + ((noise_level_slider - 1) / 50) ** 2 * (10)
|
| 113 |
+
|
| 114 |
+
def make_xor(n_samples=250, noise=0):
|
| 115 |
+
|
| 116 |
+
# Base spread ensures some separation even when noise = 0
|
| 117 |
+
base_spread = 2.0
|
| 118 |
+
min_offset = 0.1 # Prevents tight clustering at corners
|
| 119 |
+
|
| 120 |
+
# Generate XOR quadrants
|
| 121 |
+
X1 = np.random.uniform(-base_spread, -min_offset, (n_samples, 2)) # Bottom-left
|
| 122 |
+
X2 = np.random.uniform(min_offset, base_spread, (n_samples, 2)) # Top-right
|
| 123 |
+
X3_x = np.random.uniform(-base_spread, -min_offset, (n_samples, 1)) # Top-left (x)
|
| 124 |
+
X3_y = np.random.uniform(min_offset, base_spread, (n_samples, 1)) # Top-left (y)
|
| 125 |
+
X3 = np.hstack([X3_x, X3_y])
|
| 126 |
+
|
| 127 |
+
X4_x = np.random.uniform(min_offset, base_spread, (n_samples, 1)) # Bottom-right (x)
|
| 128 |
+
X4_y = np.random.uniform(-base_spread, -min_offset, (n_samples, 1)) # Bottom-right (y)
|
| 129 |
+
X4 = np.hstack([X4_x, X4_y])
|
| 130 |
+
|
| 131 |
+
X = np.vstack([X1, X2, X3, X4])
|
| 132 |
+
|
| 133 |
+
# Apply smooth noise scaling
|
| 134 |
+
if noise > 0:
|
| 135 |
+
noise_scale = 0.05 + (noise / 100) # Small increase for gradual effect
|
| 136 |
+
X += np.random.randn(*X.shape) * noise_scale
|
| 137 |
+
|
| 138 |
+
# Define XOR labels: (1 if x and y have same sign, else 0)
|
| 139 |
+
y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0).astype(int)
|
| 140 |
+
|
| 141 |
+
return X, y
|
| 142 |
+
|
| 143 |
+
# Total dataset size
|
| 144 |
+
total_samples = 800
|
| 145 |
+
|
| 146 |
+
# Calculate training set size
|
| 147 |
+
train_size = int(total_samples * train_to_test_ratio)
|
| 148 |
+
|
| 149 |
+
def get_dataset(dataset_type, total_samples, noise_level, gaussian_noise, noise_level_slider):
|
| 150 |
+
# Dataset generators
|
| 151 |
+
dataset_generators = {
|
| 152 |
+
"Gaussian": lambda: make_blobs(n_samples=total_samples, centers=2, n_features=2, cluster_std=gaussian_noise, random_state=45),
|
| 153 |
+
"Circle": lambda: make_circles(n_samples=total_samples, shuffle=True, noise=noise_level, factor=0.2),
|
| 154 |
+
"Exclusive OR": lambda: make_xor(n_samples=total_samples, noise=noise_level_slider),
|
| 155 |
+
#"Spiral": lambda: make_spiral(n_samples=total_samples, noise=noise_level_slider),
|
| 156 |
+
}
|
| 157 |
+
return dataset_generators.get(dataset_type, lambda: (None, None))()
|
| 158 |
+
# Fetch dataset
|
| 159 |
+
if problem_type == "Classification":
|
| 160 |
+
fv, cv = get_dataset(dataset_type, total_samples, noise_level, gaussian_noise, noise_level_slider)
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
# Functions for modifying hidden layers
|
| 164 |
+
def add_layer():
|
| 165 |
+
if st.session_state.num_hidden_layers < 6:
|
| 166 |
+
st.session_state.num_hidden_layers += 1
|
| 167 |
+
st.session_state.hidden_layer_neurons.append(1)
|
| 168 |
+
|
| 169 |
+
def remove_layer():
|
| 170 |
+
if st.session_state.num_hidden_layers > 0 and st.session_state.hidden_layer_neurons:
|
| 171 |
+
st.session_state.num_hidden_layers -= 1
|
| 172 |
+
st.session_state.hidden_layer_neurons.pop()
|
| 173 |
+
|
| 174 |
+
# Functions for modifying neurons in each layer
|
| 175 |
+
def increase_neurons(layer_idx):
|
| 176 |
+
if st.session_state.hidden_layer_neurons[layer_idx] < 8:
|
| 177 |
+
st.session_state.hidden_layer_neurons[layer_idx] += 1
|
| 178 |
+
|
| 179 |
+
def decrease_neurons(layer_idx):
|
| 180 |
+
if st.session_state.hidden_layer_neurons[layer_idx] > 1:
|
| 181 |
+
st.session_state.hidden_layer_neurons[layer_idx] -= 1
|
| 182 |
+
|
| 183 |
+
col1, col2, col3 = st.columns([2, 2, 2])
|
| 184 |
+
|
| 185 |
+
with col1:
|
| 186 |
+
st.subheader("Select Input Features")
|
| 187 |
+
|
| 188 |
+
# Compute new features
|
| 189 |
+
std = StandardScaler()
|
| 190 |
+
X = std.fit_transform(fv)
|
| 191 |
+
x1, x2 = X[:, 0], X[:, 1]
|
| 192 |
+
|
| 193 |
+
# Update feature selection
|
| 194 |
+
available_features = ["X1", "X2"]
|
| 195 |
+
|
| 196 |
+
st.markdown("""
|
| 197 |
+
<style>
|
| 198 |
+
div[data-testid="stCheckbox"] {
|
| 199 |
+
background-color: #252830;
|
| 200 |
+
border-radius: 8px;
|
| 201 |
+
padding: 8px;
|
| 202 |
+
margin-bottom: 5px;
|
| 203 |
+
color: white;
|
| 204 |
+
}
|
| 205 |
+
div[data-testid="stCheckbox"] label {
|
| 206 |
+
font-size: 16px;
|
| 207 |
+
font-weight: bold;
|
| 208 |
+
color: white;
|
| 209 |
+
}
|
| 210 |
+
</style>
|
| 211 |
+
""", unsafe_allow_html=True)
|
| 212 |
+
|
| 213 |
+
selected_features = [feature for feature in available_features if st.checkbox(feature, value = st.session_state.get(feature, feature in ["X1", "X2"]), key=feature)]
|
| 214 |
+
st.session_state.selected_features = selected_features
|
| 215 |
+
num_inputs = len(selected_features)
|
| 216 |
+
|
| 217 |
+
# Map feature names to actual values
|
| 218 |
+
feature_mapping = {
|
| 219 |
+
"X1": x1,
|
| 220 |
+
"X2": x2,
|
| 221 |
+
}
|
| 222 |
+
|
| 223 |
+
if problem_type == 'Classification':
|
| 224 |
+
# Ensure a balanced split (Stratified Sampling)
|
| 225 |
+
x_train, x_test, y_train, y_test = train_test_split(
|
| 226 |
+
fv, cv,
|
| 227 |
+
test_size=1-train_to_test_ratio,
|
| 228 |
+
stratify=cv,
|
| 229 |
+
)
|
| 230 |
+
else:
|
| 231 |
+
# Ensure a balanced split
|
| 232 |
+
x_train, x_test, y_train, y_test = train_test_split(
|
| 233 |
+
fv, cv,
|
| 234 |
+
test_size=1-train_to_test_ratio
|
| 235 |
+
)
|
| 236 |
+
with col2:
|
| 237 |
+
# Visualize dataset
|
| 238 |
+
st.subheader("Dataset Preview")
|
| 239 |
+
fig, ax = plt.subplots(figsize=(3, 3))
|
| 240 |
+
scatter = ax.scatter(x_train[:, 0], x_train[:, 1], c=y_train, cmap="coolwarm", edgecolors="k", alpha=0.7)
|
| 241 |
+
ax.set_xticks([])
|
| 242 |
+
ax.set_yticks([])
|
| 243 |
+
ax.set_facecolor("#f0f0f0")
|
| 244 |
+
|
| 245 |
+
st.pyplot(fig)
|
| 246 |
+
|
| 247 |
+
num_outputs = 1
|
| 248 |
+
with col3:
|
| 249 |
+
st.subheader("Hidden Layers")
|
| 250 |
+
col1, col2 = st.columns([1, 1])
|
| 251 |
+
with col1:
|
| 252 |
+
st.button("➕ Add Layer", on_click=add_layer)
|
| 253 |
+
with col2:
|
| 254 |
+
st.button("➖ Remove Layer", on_click=remove_layer)
|
| 255 |
+
|
| 256 |
+
st.write("**Adjust Neurons in Each Layer:**")
|
| 257 |
+
for i in range(st.session_state.num_hidden_layers):
|
| 258 |
+
col1, col2, col3 = st.columns([1, 2, 1])
|
| 259 |
+
with col1:
|
| 260 |
+
st.button("➖", key=f"dec_neuron_{i}", on_click=decrease_neurons, args=(i,))
|
| 261 |
+
with col2:
|
| 262 |
+
st.markdown(f"**Layer {i+1}: {st.session_state.hidden_layer_neurons[i]} neurons**")
|
| 263 |
+
with col3:
|
| 264 |
+
st.button("➕", key=f"inc_neuron_{i}", on_click=increase_neurons, args=(i,))
|
| 265 |
+
|
| 266 |
+
# Stack selected features for training
|
| 267 |
+
selected_data = np.column_stack([feature_mapping[feature] for feature in selected_features])
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
# Function to draw the neural network visually
|
| 271 |
+
def draw_nn(selected_features, hidden_layer_neurons, num_outputs):
|
| 272 |
+
G = nx.DiGraph()
|
| 273 |
+
|
| 274 |
+
# Define layers dynamically
|
| 275 |
+
input_layer = selected_features # Match node names with feature names
|
| 276 |
+
hidden_layers = []
|
| 277 |
+
if st.session_state.num_hidden_layers > 0:
|
| 278 |
+
hidden_layers = [[f"hl{i+1}_{j+1}" for j in range(hidden_layer_neurons[i])] for i in range(st.session_state.num_hidden_layers)]
|
| 279 |
+
output_layer = ["y1"] # Single output neuron
|
| 280 |
+
|
| 281 |
+
layers = [input_layer] + hidden_layers + [output_layer]
|
| 282 |
+
|
| 283 |
+
# Add nodes and assign colors
|
| 284 |
+
node_colors = {}
|
| 285 |
+
input_color = "lightgreen"
|
| 286 |
+
hidden_color = "lightblue"
|
| 287 |
+
output_color = "salmon"
|
| 288 |
+
|
| 289 |
+
# Add nodes
|
| 290 |
+
# for layer_idx, layer in enumerate(layers):
|
| 291 |
+
# for node in layer:
|
| 292 |
+
# G.add_node(node, layer=layer_idx, edgecolors='black')
|
| 293 |
+
for layer_idx, layer in enumerate(layers):
|
| 294 |
+
for node in layer:
|
| 295 |
+
G.add_node(node, layer=layer_idx, edgecolors='black')
|
| 296 |
+
if layer_idx == 0:
|
| 297 |
+
node_colors[node] = input_color # Input layer
|
| 298 |
+
elif layer_idx == len(layers) - 1:
|
| 299 |
+
node_colors[node] = output_color # Output layer
|
| 300 |
+
else:
|
| 301 |
+
node_colors[node] = hidden_color # Hidden layers
|
| 302 |
+
|
| 303 |
+
# Add edges (fully connected between layers)
|
| 304 |
+
for i in range(len(layers) - 1):
|
| 305 |
+
for node1 in layers[i]:
|
| 306 |
+
for node2 in layers[i + 1]:
|
| 307 |
+
G.add_edge(node1, node2)
|
| 308 |
+
|
| 309 |
+
# Graph Layout
|
| 310 |
+
pos = nx.multipartite_layout(G, subset_key="layer")
|
| 311 |
+
fig, ax = plt.subplots(figsize=(12, 4))
|
| 312 |
+
|
| 313 |
+
# Style updates for TensorFlow Playground look
|
| 314 |
+
fig.patch.set_alpha(0)
|
| 315 |
+
ax.set_facecolor("#252830") # Dark background
|
| 316 |
+
ax.patch.set_alpha(1)
|
| 317 |
+
|
| 318 |
+
# Get color list
|
| 319 |
+
color_list = [node_colors[node] for node in G.nodes]
|
| 320 |
+
|
| 321 |
+
nx.draw(G, pos, with_labels=True, node_color=color_list, edge_color="white", edgecolors = "black",
|
| 322 |
+
node_size=800, font_size=7.5, ax=ax, width=0.4, font_color="black", font_weight="bold")
|
| 323 |
+
|
| 324 |
+
return fig
|
| 325 |
+
|
| 326 |
+
def create_ann_model(input_dim, hidden_layers, neurons_per_layer):
|
| 327 |
+
model = Sequential()
|
| 328 |
+
model.add(Input(shape=(input_dim,))) # Input layer
|
| 329 |
+
|
| 330 |
+
reg = None
|
| 331 |
+
if regularization_type == "L1":
|
| 332 |
+
reg = l1(regularization_rate)
|
| 333 |
+
elif regularization_type == "L2":
|
| 334 |
+
reg = l2(regularization_rate)
|
| 335 |
+
|
| 336 |
+
# Add hidden layers
|
| 337 |
+
for neurons in neurons_per_layer:
|
| 338 |
+
model.add(Dense(neurons, activation=activation_function.lower(), kernel_regularizer=reg))
|
| 339 |
+
|
| 340 |
+
# Output layer
|
| 341 |
+
model.add(Dense(1, activation='sigmoid'))
|
| 342 |
+
|
| 343 |
+
# Compile the model with explicit learning rate
|
| 344 |
+
optimizer = SGD(learning_rate=learning_rate)
|
| 345 |
+
model.compile(
|
| 346 |
+
optimizer=optimizer,
|
| 347 |
+
loss=BinaryCrossentropy(),
|
| 348 |
+
metrics=['accuracy']
|
| 349 |
+
)
|
| 350 |
+
return model
|
| 351 |
+
|
| 352 |
+
def plot_decision_boundary(model, x_train, y_train):
|
| 353 |
+
plt.figure(figsize=(6, 4))
|
| 354 |
+
plot_decision_regions(x_train, y_train, clf=model, legend=2)
|
| 355 |
+
#plt.title('Decision Boundary')
|
| 356 |
+
return plt
|
| 357 |
+
|
| 358 |
+
class LossPlotCallback(keras.callbacks.Callback):
|
| 359 |
+
def __init__(self, X, y, display_epochs=10):
|
| 360 |
+
super().__init__()
|
| 361 |
+
self.loss_df = pd.DataFrame(columns=["Epoch", "Train Loss", "Val Loss"])
|
| 362 |
+
#self.display_epochs = display_epochs
|
| 363 |
+
self.X = X
|
| 364 |
+
self.y = y
|
| 365 |
+
self.plot_placeholder = st.empty() # SINGLE container to update dynamically
|
| 366 |
+
|
| 367 |
+
def on_epoch_end(self, epoch, logs=None):
|
| 368 |
+
# Append new train and validation loss values
|
| 369 |
+
new_row = pd.DataFrame({
|
| 370 |
+
"Epoch": [epoch + 1],
|
| 371 |
+
"Train Loss": [logs['loss']],
|
| 372 |
+
"Val Loss": [logs['val_loss']]
|
| 373 |
+
})
|
| 374 |
+
self.loss_df = pd.concat([self.loss_df, new_row], ignore_index=True)
|
| 375 |
+
|
| 376 |
+
with self.plot_placeholder.container():
|
| 377 |
+
col1, col2 = st.columns([1, 1])
|
| 378 |
+
|
| 379 |
+
# Left Column: Decision Surface
|
| 380 |
+
with col1:
|
| 381 |
+
st.write("### Decision Boundary")
|
| 382 |
+
fig1 = plot_decision_boundary(ann_model, selected_data, cv)
|
| 383 |
+
st.pyplot(fig1, clear_figure=True)
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
# Right Column: Loss Plot
|
| 387 |
+
with col2:
|
| 388 |
+
st.write("### Training vs Validation Loss")
|
| 389 |
+
fig2, ax = plt.subplots(figsize=(6, 4), dpi=100)
|
| 390 |
+
ax.plot(self.loss_df["Epoch"], self.loss_df["Train Loss"], marker='o', markersize=1, linestyle='-', color='b', label="Train Loss")
|
| 391 |
+
|
| 392 |
+
if "Val Loss" in self.loss_df.columns and self.loss_df["Val Loss"].notna().any():
|
| 393 |
+
ax.plot(self.loss_df["Epoch"], self.loss_df["Val Loss"], marker='s',markersize=1, linestyle='--', color='r', label="Val Loss")
|
| 394 |
+
|
| 395 |
+
ax.set_xlabel("Epochs", fontsize=12, fontweight='bold')
|
| 396 |
+
ax.set_ylabel("Loss", fontsize=12, fontweight='bold')
|
| 397 |
+
|
| 398 |
+
#ax.set_title("Training vs Validation Loss", fontsize=14, fontweight='bold')
|
| 399 |
+
|
| 400 |
+
ax.legend(fontsize=10)
|
| 401 |
+
|
| 402 |
+
ax.grid(True, linestyle='--', alpha=0.6)
|
| 403 |
+
ax.spines['top'].set_visible(False)
|
| 404 |
+
ax.spines['right'].set_visible(False)
|
| 405 |
+
|
| 406 |
+
ax.set_xticks(range(1, len(self.loss_df) + 1),)
|
| 407 |
+
plt.xticks(rotation=45)
|
| 408 |
+
#ax.set_yticks(range(0, 1.0, 0.1))
|
| 409 |
+
st.pyplot(fig2, clear_figure=True)
|
| 410 |
+
|
| 411 |
+
|
| 412 |
+
if current_params != st.session_state.prev_params:
|
| 413 |
+
st.session_state.training = False # Stop training when a parameter changes
|
| 414 |
+
st.session_state.prev_params = current_params
|
| 415 |
+
|
| 416 |
+
# Start/Stop Buttons
|
| 417 |
+
col1, col2 = st.columns([1, 1])
|
| 418 |
+
with col1:
|
| 419 |
+
if st.button("▶️ Start Training"):
|
| 420 |
+
st.session_state.training = True
|
| 421 |
+
st.session_state.model_trained = False
|
| 422 |
+
|
| 423 |
+
with col2:
|
| 424 |
+
if st.button("⏹️ Stop Training"):
|
| 425 |
+
st.session_state.training = False
|
| 426 |
+
|
| 427 |
+
# Render the neural network visualization
|
| 428 |
+
st.write("### Logical Structure of the Neural Network")
|
| 429 |
+
st.pyplot(draw_nn(selected_features, st.session_state.hidden_layer_neurons, num_outputs))
|
| 430 |
+
|
| 431 |
+
# Train Model if Start is clicked
|
| 432 |
+
if st.session_state.training:
|
| 433 |
+
# Train the model and track loss in a DataFrame
|
| 434 |
+
ann_model = create_ann_model(
|
| 435 |
+
len(selected_features),
|
| 436 |
+
st.session_state.num_hidden_layers,
|
| 437 |
+
st.session_state.hidden_layer_neurons
|
| 438 |
+
)
|
| 439 |
+
|
| 440 |
+
st.session_state.model_trained = True
|
| 441 |
+
|
| 442 |
+
loss_plot_callback = LossPlotCallback(X=selected_data, y=cv)
|
| 443 |
+
|
| 444 |
+
# Capture model summary
|
| 445 |
+
model_summary = io.StringIO()
|
| 446 |
+
ann_model.summary(print_fn=lambda x: model_summary.write(x + "\n"))
|
| 447 |
+
|
| 448 |
+
# Display ANN model summary in Streamlit
|
| 449 |
+
st.subheader("Artificial Neural Network Model Summary")
|
| 450 |
+
st.code(model_summary.getvalue(), language="plaintext")
|
| 451 |
+
|
| 452 |
+
history = ann_model.fit(
|
| 453 |
+
x_train, y_train,
|
| 454 |
+
epochs=999999,
|
| 455 |
+
validation_data= (x_test, y_test),
|
| 456 |
+
batch_size=batch_size,
|
| 457 |
+
callbacks=[loss_plot_callback],
|
| 458 |
+
)
|