Spaces:
Runtime error
Runtime error
Upload 10 files
Browse files- soprano/__init__.py +1 -0
- soprano/backends/base.py +20 -0
- soprano/backends/lmdeploy.py +54 -0
- soprano/backends/transformers.py +68 -0
- soprano/tts.py +172 -0
- soprano/vocos/decoder.py +45 -0
- soprano/vocos/heads.py +50 -0
- soprano/vocos/models.py +61 -0
- soprano/vocos/modules.py +47 -0
- soprano/vocos/spectral_ops.py +74 -0
soprano/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .tts import SopranoTTS
|
soprano/backends/base.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
class BaseModel:
|
| 2 |
+
def infer(self,
|
| 3 |
+
prompts,
|
| 4 |
+
top_p=0.95,
|
| 5 |
+
temperature=0.3,
|
| 6 |
+
repetition_penalty=1.2):
|
| 7 |
+
'''
|
| 8 |
+
Takes a list of prompts and returns the output hidden states
|
| 9 |
+
'''
|
| 10 |
+
pass
|
| 11 |
+
|
| 12 |
+
def stream_infer(self,
|
| 13 |
+
prompt,
|
| 14 |
+
top_p=0.95,
|
| 15 |
+
temperature=0.3,
|
| 16 |
+
repetition_penalty=1.2):
|
| 17 |
+
'''
|
| 18 |
+
Takes a prompt and returns an iterator of the output hidden states
|
| 19 |
+
'''
|
| 20 |
+
pass
|
soprano/backends/lmdeploy.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
|
| 3 |
+
from .base import BaseModel
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class LMDeployModel(BaseModel):
|
| 7 |
+
def __init__(self,
|
| 8 |
+
device='cuda',
|
| 9 |
+
cache_size_mb=100,
|
| 10 |
+
**kwargs):
|
| 11 |
+
assert device == 'cuda', "lmdeploy only supports cuda devices, consider changing device or using a different backend instead."
|
| 12 |
+
cache_size_ratio = cache_size_mb * 1024**2 / torch.cuda.get_device_properties('cuda').total_memory
|
| 13 |
+
backend_config = TurbomindEngineConfig(cache_max_entry_count=cache_size_ratio)
|
| 14 |
+
self.pipeline = pipeline('ekwek/Soprano-80M',
|
| 15 |
+
log_level='ERROR',
|
| 16 |
+
backend_config=backend_config)
|
| 17 |
+
|
| 18 |
+
def infer(self,
|
| 19 |
+
prompts,
|
| 20 |
+
top_p=0.95,
|
| 21 |
+
temperature=0.3,
|
| 22 |
+
repetition_penalty=1.2):
|
| 23 |
+
gen_config=GenerationConfig(output_last_hidden_state='generation',
|
| 24 |
+
do_sample=True,
|
| 25 |
+
top_p=top_p,
|
| 26 |
+
temperature=temperature,
|
| 27 |
+
repetition_penalty=repetition_penalty,
|
| 28 |
+
max_new_tokens=512)
|
| 29 |
+
responses = self.pipeline(prompts, gen_config=gen_config)
|
| 30 |
+
res = []
|
| 31 |
+
for response in responses:
|
| 32 |
+
res.append({
|
| 33 |
+
'finish_reason': response.finish_reason,
|
| 34 |
+
'hidden_state': response.last_hidden_state
|
| 35 |
+
})
|
| 36 |
+
return res
|
| 37 |
+
|
| 38 |
+
def stream_infer(self,
|
| 39 |
+
prompt,
|
| 40 |
+
top_p=0.95,
|
| 41 |
+
temperature=0.3,
|
| 42 |
+
repetition_penalty=1.2):
|
| 43 |
+
gen_config=GenerationConfig(output_last_hidden_state='generation',
|
| 44 |
+
do_sample=True,
|
| 45 |
+
top_p=top_p,
|
| 46 |
+
temperature=temperature,
|
| 47 |
+
repetition_penalty=repetition_penalty,
|
| 48 |
+
max_new_tokens=512)
|
| 49 |
+
responses = self.pipeline.stream_infer([prompt], gen_config=gen_config)
|
| 50 |
+
for response in responses:
|
| 51 |
+
yield {
|
| 52 |
+
'finish_reason': response.finish_reason,
|
| 53 |
+
'hidden_state': response.last_hidden_state
|
| 54 |
+
}
|
soprano/backends/transformers.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
from .base import BaseModel
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class TransformersModel(BaseModel):
|
| 7 |
+
def __init__(self,
|
| 8 |
+
device='cuda',
|
| 9 |
+
**kwargs):
|
| 10 |
+
self.device = device
|
| 11 |
+
|
| 12 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 13 |
+
'ekwek/Soprano-80M',
|
| 14 |
+
torch_dtype=torch.bfloat16 if device == 'cuda' else torch.float32,
|
| 15 |
+
device_map=device
|
| 16 |
+
)
|
| 17 |
+
self.tokenizer = AutoTokenizer.from_pretrained('ekwek/Soprano-80M')
|
| 18 |
+
self.model.eval()
|
| 19 |
+
|
| 20 |
+
def infer(self,
|
| 21 |
+
prompts,
|
| 22 |
+
top_p=0.95,
|
| 23 |
+
temperature=0.3,
|
| 24 |
+
repetition_penalty=1.2):
|
| 25 |
+
inputs = self.tokenizer(
|
| 26 |
+
prompts,
|
| 27 |
+
return_tensors='pt',
|
| 28 |
+
padding=True,
|
| 29 |
+
truncation=True,
|
| 30 |
+
max_length=512,
|
| 31 |
+
).to(self.device)
|
| 32 |
+
|
| 33 |
+
with torch.no_grad():
|
| 34 |
+
outputs = self.model.generate(
|
| 35 |
+
input_ids=inputs['input_ids'],
|
| 36 |
+
attention_mask=inputs['attention_mask'],
|
| 37 |
+
max_new_tokens=512,
|
| 38 |
+
do_sample=True,
|
| 39 |
+
top_p=top_p,
|
| 40 |
+
temperature=temperature,
|
| 41 |
+
repetition_penalty=repetition_penalty,
|
| 42 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
| 43 |
+
return_dict_in_generate=True,
|
| 44 |
+
output_hidden_states=True,
|
| 45 |
+
)
|
| 46 |
+
res = []
|
| 47 |
+
eos_token_id = self.model.config.eos_token_id
|
| 48 |
+
for i in range(len(prompts)):
|
| 49 |
+
seq = outputs.sequences[i]
|
| 50 |
+
hidden_states = []
|
| 51 |
+
num_output_tokens = len(outputs.hidden_states)
|
| 52 |
+
for j in range(num_output_tokens):
|
| 53 |
+
token = seq[j + seq.size(0) - num_output_tokens]
|
| 54 |
+
if token != eos_token_id: hidden_states.append(outputs.hidden_states[j][-1][i, -1, :])
|
| 55 |
+
last_hidden_state = torch.stack(hidden_states).squeeze()
|
| 56 |
+
finish_reason = 'stop' if seq[-1].item() == eos_token_id else 'length'
|
| 57 |
+
res.append({
|
| 58 |
+
'finish_reason': finish_reason,
|
| 59 |
+
'hidden_state': last_hidden_state
|
| 60 |
+
})
|
| 61 |
+
return res
|
| 62 |
+
|
| 63 |
+
def stream_infer(self,
|
| 64 |
+
prompt,
|
| 65 |
+
top_p=0.95,
|
| 66 |
+
temperature=0.3,
|
| 67 |
+
repetition_penalty=1.2):
|
| 68 |
+
raise NotImplementedError("transformers backend does not currently support streaming, please consider using lmdeploy backend instead.")
|
soprano/tts.py
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .vocos.decoder import SopranoDecoder
|
| 2 |
+
import torch
|
| 3 |
+
import re
|
| 4 |
+
from unidecode import unidecode
|
| 5 |
+
from scipy.io import wavfile
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
+
import os
|
| 8 |
+
import time
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class SopranoTTS:
|
| 12 |
+
def __init__(self,
|
| 13 |
+
backend='auto',
|
| 14 |
+
device='cuda',
|
| 15 |
+
cache_size_mb=10,
|
| 16 |
+
decoder_batch_size=1):
|
| 17 |
+
RECOGNIZED_DEVICES = ['cuda']
|
| 18 |
+
RECOGNIZED_BACKENDS = ['auto', 'lmdeploy', 'transformers']
|
| 19 |
+
assert device in RECOGNIZED_DEVICES, f"unrecognized device {device}, device must be in {RECOGNIZED_DEVICES}"
|
| 20 |
+
if backend == 'auto':
|
| 21 |
+
if device == 'cpu':
|
| 22 |
+
backend = 'transformers'
|
| 23 |
+
else:
|
| 24 |
+
try:
|
| 25 |
+
import lmdeploy
|
| 26 |
+
backend = 'lmdeploy'
|
| 27 |
+
except ImportError:
|
| 28 |
+
backend='transformers'
|
| 29 |
+
print(f"Using backend {backend}.")
|
| 30 |
+
assert backend in RECOGNIZED_BACKENDS, f"unrecognized backend {backend}, backend must be in {RECOGNIZED_BACKENDS}"
|
| 31 |
+
|
| 32 |
+
if backend == 'lmdeploy':
|
| 33 |
+
from .backends.lmdeploy import LMDeployModel
|
| 34 |
+
self.pipeline = LMDeployModel(device=device, cache_size_mb=cache_size_mb)
|
| 35 |
+
elif backend == 'transformers':
|
| 36 |
+
from .backends.transformers import TransformersModel
|
| 37 |
+
self.pipeline = TransformersModel(device=device)
|
| 38 |
+
|
| 39 |
+
self.decoder = SopranoDecoder().cuda()
|
| 40 |
+
decoder_path = hf_hub_download(repo_id='ekwek/Soprano-80M', filename='decoder.pth')
|
| 41 |
+
self.decoder.load_state_dict(torch.load(decoder_path))
|
| 42 |
+
self.decoder_batch_size=decoder_batch_size
|
| 43 |
+
self.RECEPTIVE_FIELD = 4 # Decoder receptive field
|
| 44 |
+
self.TOKEN_SIZE = 2048 # Number of samples per audio token
|
| 45 |
+
|
| 46 |
+
self.infer("Hello world!") # warmup
|
| 47 |
+
|
| 48 |
+
def _preprocess_text(self, texts):
|
| 49 |
+
'''
|
| 50 |
+
adds prompt format and sentence/part index
|
| 51 |
+
'''
|
| 52 |
+
res = []
|
| 53 |
+
for text_idx, text in enumerate(texts):
|
| 54 |
+
text = text.strip()
|
| 55 |
+
sentences = re.split(r"(?<=[.!?])\s+", text)
|
| 56 |
+
processed_sentences = []
|
| 57 |
+
for sentence_idx, sentence in enumerate(sentences):
|
| 58 |
+
old_len = len(sentence)
|
| 59 |
+
new_sentence = re.sub(r"[^A-Za-z !\$%&'*+,-./0123456789<>?_]", "", sentence)
|
| 60 |
+
new_sentence = re.sub(r"[<>/_+]", "", new_sentence)
|
| 61 |
+
new_sentence = re.sub(r"\.\.[^\.]", ".", new_sentence)
|
| 62 |
+
new_len = len(new_sentence)
|
| 63 |
+
if old_len != new_len:
|
| 64 |
+
print(f"Warning: unsupported characters found in sentence: {sentence}\n\tThese characters have been removed.")
|
| 65 |
+
new_sentence = unidecode(new_sentence.strip())
|
| 66 |
+
processed_sentences.append((f'[STOP][TEXT]{new_sentence}[START]', text_idx, sentence_idx))
|
| 67 |
+
res.extend(processed_sentences)
|
| 68 |
+
return res
|
| 69 |
+
|
| 70 |
+
def infer(self,
|
| 71 |
+
text,
|
| 72 |
+
out_path=None,
|
| 73 |
+
top_p=0.95,
|
| 74 |
+
temperature=0.3,
|
| 75 |
+
repetition_penalty=1.2):
|
| 76 |
+
results = self.infer_batch([text],
|
| 77 |
+
top_p=top_p,
|
| 78 |
+
temperature=temperature,
|
| 79 |
+
repetition_penalty=repetition_penalty,
|
| 80 |
+
out_dir=None)[0]
|
| 81 |
+
if out_path:
|
| 82 |
+
wavfile.write(out_path, 32000, results.cpu().numpy())
|
| 83 |
+
return results
|
| 84 |
+
|
| 85 |
+
def infer_batch(self,
|
| 86 |
+
texts,
|
| 87 |
+
out_dir=None,
|
| 88 |
+
top_p=0.95,
|
| 89 |
+
temperature=0.3,
|
| 90 |
+
repetition_penalty=1.2):
|
| 91 |
+
sentence_data = self._preprocess_text(texts)
|
| 92 |
+
prompts = list(map(lambda x: x[0], sentence_data))
|
| 93 |
+
responses = self.pipeline.infer(prompts,
|
| 94 |
+
top_p=top_p,
|
| 95 |
+
temperature=temperature,
|
| 96 |
+
repetition_penalty=repetition_penalty)
|
| 97 |
+
hidden_states = []
|
| 98 |
+
for i, response in enumerate(responses):
|
| 99 |
+
if response['finish_reason'] != 'stop':
|
| 100 |
+
print(f"Warning: some sentences did not complete generation, likely due to hallucination.")
|
| 101 |
+
hidden_state = response['hidden_state']
|
| 102 |
+
hidden_states.append(hidden_state)
|
| 103 |
+
combined = list(zip(hidden_states, sentence_data))
|
| 104 |
+
combined.sort(key=lambda x: -x[0].size(0))
|
| 105 |
+
hidden_states, sentence_data = zip(*combined)
|
| 106 |
+
|
| 107 |
+
num_texts = len(texts)
|
| 108 |
+
audio_concat = [[] for _ in range(num_texts)]
|
| 109 |
+
for sentence in sentence_data:
|
| 110 |
+
audio_concat[sentence[1]].append(None)
|
| 111 |
+
for idx in range(0, len(hidden_states), self.decoder_batch_size):
|
| 112 |
+
batch_hidden_states = []
|
| 113 |
+
lengths = list(map(lambda x: x.size(0), hidden_states[idx:idx+self.decoder_batch_size]))
|
| 114 |
+
N = len(lengths)
|
| 115 |
+
for i in range(N):
|
| 116 |
+
batch_hidden_states.append(torch.cat([
|
| 117 |
+
torch.zeros((1, 512, lengths[0]-lengths[i]), device='cuda'),
|
| 118 |
+
hidden_states[idx+i].unsqueeze(0).transpose(1,2).cuda().to(torch.float32),
|
| 119 |
+
], dim=2))
|
| 120 |
+
batch_hidden_states = torch.cat(batch_hidden_states)
|
| 121 |
+
with torch.no_grad():
|
| 122 |
+
audio = self.decoder(batch_hidden_states)
|
| 123 |
+
|
| 124 |
+
for i in range(N):
|
| 125 |
+
text_id = sentence_data[idx+i][1]
|
| 126 |
+
sentence_id = sentence_data[idx+i][2]
|
| 127 |
+
audio_concat[text_id][sentence_id] = audio[i].squeeze()[-(lengths[i]*self.TOKEN_SIZE-self.TOKEN_SIZE):]
|
| 128 |
+
audio_concat = [torch.cat(x).cpu() for x in audio_concat]
|
| 129 |
+
|
| 130 |
+
if out_dir:
|
| 131 |
+
os.makedirs(out_dir, exist_ok=True)
|
| 132 |
+
for i in range(len(audio_concat)):
|
| 133 |
+
wavfile.write(f"{out_dir}/{i}.wav", 32000, audio_concat[i].cpu().numpy())
|
| 134 |
+
return audio_concat
|
| 135 |
+
|
| 136 |
+
def infer_stream(self,
|
| 137 |
+
text,
|
| 138 |
+
chunk_size=1,
|
| 139 |
+
top_p=0.95,
|
| 140 |
+
temperature=0.3,
|
| 141 |
+
repetition_penalty=1.2):
|
| 142 |
+
start_time = time.time()
|
| 143 |
+
sentence_data = self._preprocess_text([text])
|
| 144 |
+
|
| 145 |
+
first_chunk = True
|
| 146 |
+
for sentence, _, _ in sentence_data:
|
| 147 |
+
responses = self.pipeline.stream_infer(sentence,
|
| 148 |
+
top_p=top_p,
|
| 149 |
+
temperature=temperature,
|
| 150 |
+
repetition_penalty=repetition_penalty)
|
| 151 |
+
hidden_states_buffer = []
|
| 152 |
+
chunk_counter = chunk_size
|
| 153 |
+
for token in responses:
|
| 154 |
+
finished = token['finish_reason'] is not None
|
| 155 |
+
if not finished: hidden_states_buffer.append(token['hidden_state'][-1])
|
| 156 |
+
hidden_states_buffer = hidden_states_buffer[-(2*self.RECEPTIVE_FIELD+chunk_size):]
|
| 157 |
+
if finished or len(hidden_states_buffer) >= self.RECEPTIVE_FIELD + chunk_size:
|
| 158 |
+
if finished or chunk_counter == chunk_size:
|
| 159 |
+
batch_hidden_states = torch.stack(hidden_states_buffer)
|
| 160 |
+
inp = batch_hidden_states.unsqueeze(0).transpose(1, 2).cuda().to(torch.float32)
|
| 161 |
+
with torch.no_grad():
|
| 162 |
+
audio = self.decoder(inp)[0]
|
| 163 |
+
if finished:
|
| 164 |
+
audio_chunk = audio[-((self.RECEPTIVE_FIELD+chunk_counter-1)*self.TOKEN_SIZE-self.TOKEN_SIZE):]
|
| 165 |
+
else:
|
| 166 |
+
audio_chunk = audio[-((self.RECEPTIVE_FIELD+chunk_size)*self.TOKEN_SIZE-self.TOKEN_SIZE):-(self.RECEPTIVE_FIELD*self.TOKEN_SIZE-self.TOKEN_SIZE)]
|
| 167 |
+
chunk_counter = 0
|
| 168 |
+
if first_chunk:
|
| 169 |
+
print(f"Streaming latency: {1000*(time.time()-start_time):.2f} ms")
|
| 170 |
+
first_chunk = False
|
| 171 |
+
yield audio_chunk.cpu()
|
| 172 |
+
chunk_counter += 1
|
soprano/vocos/decoder.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
|
| 4 |
+
from .models import VocosBackbone
|
| 5 |
+
from .heads import ISTFTHead
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class SopranoDecoder(nn.Module):
|
| 9 |
+
def __init__(self,
|
| 10 |
+
num_input_channels=512,
|
| 11 |
+
decoder_num_layers=8,
|
| 12 |
+
decoder_dim=512,
|
| 13 |
+
decoder_intermediate_dim=None,
|
| 14 |
+
hop_length=512,
|
| 15 |
+
n_fft=2048,
|
| 16 |
+
upscale=4,
|
| 17 |
+
dw_kernel=3,
|
| 18 |
+
):
|
| 19 |
+
super().__init__()
|
| 20 |
+
self.decoder_initial_channels = num_input_channels
|
| 21 |
+
self.num_layers = decoder_num_layers
|
| 22 |
+
self.dim = decoder_dim
|
| 23 |
+
self.intermediate_dim = decoder_intermediate_dim if decoder_intermediate_dim else decoder_dim*3
|
| 24 |
+
self.hop_length = hop_length
|
| 25 |
+
self.n_fft = n_fft
|
| 26 |
+
self.upscale = upscale
|
| 27 |
+
self.dw_kernel = dw_kernel
|
| 28 |
+
|
| 29 |
+
self.decoder = VocosBackbone(input_channels=self.decoder_initial_channels,
|
| 30 |
+
dim=self.dim,
|
| 31 |
+
intermediate_dim=self.intermediate_dim,
|
| 32 |
+
num_layers=self.num_layers,
|
| 33 |
+
input_kernel_size=dw_kernel,
|
| 34 |
+
dw_kernel_size=dw_kernel,
|
| 35 |
+
)
|
| 36 |
+
self.head = ISTFTHead(dim=self.dim,
|
| 37 |
+
n_fft=self.n_fft,
|
| 38 |
+
hop_length=self.hop_length)
|
| 39 |
+
|
| 40 |
+
def forward(self, x):
|
| 41 |
+
T = x.size(2)
|
| 42 |
+
x = torch.nn.functional.interpolate(x, size=self.upscale*(T-1)+1, mode='linear', align_corners=True)
|
| 43 |
+
x = self.decoder(x)
|
| 44 |
+
reconstructed = self.head(x)
|
| 45 |
+
return reconstructed
|
soprano/vocos/heads.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
from .spectral_ops import ISTFT
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class ISTFTHead(nn.Module):
|
| 7 |
+
"""
|
| 8 |
+
ISTFT Head module for predicting STFT complex coefficients.
|
| 9 |
+
|
| 10 |
+
Args:
|
| 11 |
+
dim (int): Hidden dimension of the model.
|
| 12 |
+
n_fft (int): Size of Fourier transform.
|
| 13 |
+
hop_length (int): The distance between neighboring sliding window frames, which should align with
|
| 14 |
+
the resolution of the input features.
|
| 15 |
+
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
def __init__(self, dim: int, n_fft: int, hop_length: int, padding: str = "center"):
|
| 19 |
+
super().__init__()
|
| 20 |
+
out_dim = n_fft + 2
|
| 21 |
+
self.out = torch.nn.Linear(dim, out_dim)
|
| 22 |
+
self.istft = ISTFT(n_fft=n_fft, hop_length=hop_length, win_length=n_fft, padding=padding)
|
| 23 |
+
|
| 24 |
+
@torch.compiler.disable
|
| 25 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 26 |
+
"""
|
| 27 |
+
Forward pass of the ISTFTHead module.
|
| 28 |
+
|
| 29 |
+
Args:
|
| 30 |
+
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
|
| 31 |
+
L is the sequence length, and H denotes the model dimension.
|
| 32 |
+
|
| 33 |
+
Returns:
|
| 34 |
+
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
|
| 35 |
+
"""
|
| 36 |
+
x = self.out(x.transpose(1,2)).transpose(1, 2)
|
| 37 |
+
mag, p = x.chunk(2, dim=1)
|
| 38 |
+
mag = torch.exp(mag)
|
| 39 |
+
mag = torch.clip(mag, max=1e2) # safeguard to prevent excessively large magnitudes
|
| 40 |
+
# wrapping happens here. These two lines produce real and imaginary value
|
| 41 |
+
x = torch.cos(p)
|
| 42 |
+
y = torch.sin(p)
|
| 43 |
+
# recalculating phase here does not produce anything new
|
| 44 |
+
# only costs time
|
| 45 |
+
# phase = torch.atan2(y, x)
|
| 46 |
+
# S = mag * torch.exp(phase * 1j)
|
| 47 |
+
# better directly produce the complex value
|
| 48 |
+
S = mag * (x + 1j * y)
|
| 49 |
+
audio = self.istft(S)
|
| 50 |
+
return audio
|
soprano/vocos/models.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
|
| 6 |
+
from .modules import ConvNeXtBlock
|
| 7 |
+
|
| 8 |
+
class VocosBackbone(nn.Module):
|
| 9 |
+
"""
|
| 10 |
+
Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization
|
| 11 |
+
|
| 12 |
+
Args:
|
| 13 |
+
input_channels (int): Number of input features channels.
|
| 14 |
+
dim (int): Hidden dimension of the model.
|
| 15 |
+
intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock.
|
| 16 |
+
num_layers (int): Number of ConvNeXtBlock layers.
|
| 17 |
+
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`.
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
def __init__(
|
| 21 |
+
self,
|
| 22 |
+
input_channels: int,
|
| 23 |
+
dim: int,
|
| 24 |
+
intermediate_dim: int,
|
| 25 |
+
num_layers: int,
|
| 26 |
+
input_kernel_size: int = 9,
|
| 27 |
+
dw_kernel_size: int = 9,
|
| 28 |
+
layer_scale_init_value: Optional[float] = None,
|
| 29 |
+
pad: str = 'zeros',
|
| 30 |
+
):
|
| 31 |
+
super().__init__()
|
| 32 |
+
self.embed = nn.Conv1d(input_channels, dim, kernel_size=input_kernel_size, padding=input_kernel_size//2, padding_mode=pad)
|
| 33 |
+
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
| 34 |
+
self.convnext = nn.ModuleList(
|
| 35 |
+
[
|
| 36 |
+
ConvNeXtBlock(
|
| 37 |
+
dim=dim,
|
| 38 |
+
intermediate_dim=intermediate_dim,
|
| 39 |
+
dw_kernel_size=dw_kernel_size,
|
| 40 |
+
layer_scale_init_value=layer_scale_init_value or 1 / num_layers**0.5,
|
| 41 |
+
)
|
| 42 |
+
for _ in range(num_layers)
|
| 43 |
+
]
|
| 44 |
+
)
|
| 45 |
+
self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6)
|
| 46 |
+
self.apply(self._init_weights)
|
| 47 |
+
|
| 48 |
+
def _init_weights(self, m):
|
| 49 |
+
if isinstance(m, (nn.Conv1d, nn.Linear)):
|
| 50 |
+
nn.init.trunc_normal_(m.weight, std=0.02)
|
| 51 |
+
if m.bias is not None: nn.init.constant_(m.bias, 0)
|
| 52 |
+
|
| 53 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 54 |
+
x = self.embed(x) # (B, C, L)
|
| 55 |
+
x = self.norm(x.transpose(1, 2))
|
| 56 |
+
x = x.transpose(1, 2)
|
| 57 |
+
for conv_block in self.convnext:
|
| 58 |
+
x = conv_block(x)
|
| 59 |
+
x = self.final_layer_norm(x.transpose(1, 2))
|
| 60 |
+
x = x.transpose(1, 2)
|
| 61 |
+
return x
|
soprano/vocos/modules.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class ConvNeXtBlock(nn.Module):
|
| 6 |
+
"""ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal.
|
| 7 |
+
|
| 8 |
+
Args:
|
| 9 |
+
dim (int): Number of input channels.
|
| 10 |
+
intermediate_dim (int): Dimensionality of the intermediate layer.
|
| 11 |
+
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
|
| 12 |
+
Defaults to None.
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
def __init__(
|
| 16 |
+
self,
|
| 17 |
+
dim: int,
|
| 18 |
+
intermediate_dim: int,
|
| 19 |
+
layer_scale_init_value: float,
|
| 20 |
+
dw_kernel_size: int = 9,
|
| 21 |
+
):
|
| 22 |
+
super().__init__()
|
| 23 |
+
self.dwconv = nn.Conv1d(dim, dim, kernel_size=dw_kernel_size, padding=dw_kernel_size//2, groups=dim) # depthwise conv
|
| 24 |
+
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
| 25 |
+
self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers
|
| 26 |
+
self.act = nn.GELU()
|
| 27 |
+
self.pwconv2 = nn.Linear(intermediate_dim, dim)
|
| 28 |
+
self.gamma = (
|
| 29 |
+
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
|
| 30 |
+
if layer_scale_init_value > 0
|
| 31 |
+
else None
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 35 |
+
residual = x
|
| 36 |
+
x = self.dwconv(x)
|
| 37 |
+
x = x.transpose(1, 2) # (B, C, T) -> (B, T, C)
|
| 38 |
+
x = self.norm(x)
|
| 39 |
+
x = self.pwconv1(x)
|
| 40 |
+
x = self.act(x)
|
| 41 |
+
x = self.pwconv2(x)
|
| 42 |
+
if self.gamma is not None:
|
| 43 |
+
x = self.gamma * x
|
| 44 |
+
x = x.transpose(1, 2) # (B, T, C) -> (B, C, T)
|
| 45 |
+
|
| 46 |
+
x = residual + x
|
| 47 |
+
return x
|
soprano/vocos/spectral_ops.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
|
| 4 |
+
class ISTFT(nn.Module):
|
| 5 |
+
"""
|
| 6 |
+
Custom implementation of ISTFT since torch.istft doesn't allow custom padding (other than `center=True`) with
|
| 7 |
+
windowing. This is because the NOLA (Nonzero Overlap Add) check fails at the edges.
|
| 8 |
+
See issue: https://github.com/pytorch/pytorch/issues/62323
|
| 9 |
+
Specifically, in the context of neural vocoding we are interested in "same" padding analogous to CNNs.
|
| 10 |
+
The NOLA constraint is met as we trim padded samples anyway.
|
| 11 |
+
|
| 12 |
+
Args:
|
| 13 |
+
n_fft (int): Size of Fourier transform.
|
| 14 |
+
hop_length (int): The distance between neighboring sliding window frames.
|
| 15 |
+
win_length (int): The size of window frame and STFT filter.
|
| 16 |
+
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
def __init__(self, n_fft: int, hop_length: int, win_length: int, padding: str = "same"):
|
| 20 |
+
super().__init__()
|
| 21 |
+
if padding not in ["center", "same"]:
|
| 22 |
+
raise ValueError("Padding must be 'center' or 'same'.")
|
| 23 |
+
self.padding = padding
|
| 24 |
+
self.n_fft = n_fft
|
| 25 |
+
self.hop_length = hop_length
|
| 26 |
+
self.win_length = win_length
|
| 27 |
+
window = torch.hann_window(win_length).to('cuda')
|
| 28 |
+
self.register_buffer("window", window)
|
| 29 |
+
|
| 30 |
+
def forward(self, spec: torch.Tensor) -> torch.Tensor:
|
| 31 |
+
"""
|
| 32 |
+
Compute the Inverse Short Time Fourier Transform (ISTFT) of a complex spectrogram.
|
| 33 |
+
|
| 34 |
+
Args:
|
| 35 |
+
spec (Tensor): Input complex spectrogram of shape (B, N, T), where B is the batch size,
|
| 36 |
+
N is the number of frequency bins, and T is the number of time frames.
|
| 37 |
+
|
| 38 |
+
Returns:
|
| 39 |
+
Tensor: Reconstructed time-domain signal of shape (B, L), where L is the length of the output signal.
|
| 40 |
+
"""
|
| 41 |
+
if self.padding == "center":
|
| 42 |
+
spec[:,0] = 0 # fixes some strange bug where first/last freqs don't matter when bs<16 which causes exploding gradients
|
| 43 |
+
spec[:,-1] = 0
|
| 44 |
+
# Fallback to pytorch native implementation
|
| 45 |
+
return torch.istft(spec, self.n_fft, self.hop_length, self.win_length, self.window, center=True)
|
| 46 |
+
elif self.padding == "same":
|
| 47 |
+
pad = (self.win_length - self.hop_length) // 2
|
| 48 |
+
else:
|
| 49 |
+
raise ValueError("Padding must be 'center' or 'same'.")
|
| 50 |
+
|
| 51 |
+
assert spec.dim() == 3, "Expected a 3D tensor as input"
|
| 52 |
+
B, N, T = spec.shape
|
| 53 |
+
|
| 54 |
+
# Inverse FFT
|
| 55 |
+
ifft = torch.fft.irfft(spec, self.n_fft, dim=1, norm="backward")
|
| 56 |
+
ifft = ifft * self.window[None, :, None]
|
| 57 |
+
|
| 58 |
+
# Overlap and Add
|
| 59 |
+
output_size = (T - 1) * self.hop_length + self.win_length
|
| 60 |
+
y = torch.nn.functional.fold(
|
| 61 |
+
ifft, output_size=(1, output_size), kernel_size=(1, self.win_length), stride=(1, self.hop_length),
|
| 62 |
+
)[:, 0, 0, pad:-pad]
|
| 63 |
+
|
| 64 |
+
# Window envelope
|
| 65 |
+
window_sq = self.window.square().expand(1, T, -1).transpose(1, 2)
|
| 66 |
+
window_envelope = torch.nn.functional.fold(
|
| 67 |
+
window_sq, output_size=(1, output_size), kernel_size=(1, self.win_length), stride=(1, self.hop_length),
|
| 68 |
+
).squeeze()[pad:-pad]
|
| 69 |
+
|
| 70 |
+
# Normalize
|
| 71 |
+
assert (window_envelope > 1e-11).all()
|
| 72 |
+
y = y / window_envelope
|
| 73 |
+
|
| 74 |
+
return y
|