Spaces:
Runtime error
Runtime error
| import numpy as np | |
| class Slicer: | |
| def __init__(self, sr, threshold = -40.0, min_length = 5000, min_interval = 300, hop_size = 20, max_sil_kept = 5000): | |
| min_interval = sr * min_interval / 1000 | |
| self.threshold = 10 ** (threshold / 20.0) | |
| self.hop_size = round(sr * hop_size / 1000) | |
| self.win_size = min(round(min_interval), 4 * self.hop_size) | |
| self.min_length = round(sr * min_length / 1000 / self.hop_size) | |
| self.min_interval = round(min_interval / self.hop_size) | |
| self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size) | |
| def _apply_slice(self, waveform, begin, end): | |
| start_idx = begin * self.hop_size | |
| return waveform[:, start_idx:min(waveform.shape[1], end * self.hop_size)] if len(waveform.shape) > 1 else waveform[start_idx:min(waveform.shape[0], end * self.hop_size)] | |
| def slice(self, waveform): | |
| samples = waveform.mean(axis=0) if len(waveform.shape) > 1 else waveform | |
| if samples.shape[0] <= self.min_length: return [waveform] | |
| rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0) | |
| sil_tags = [] | |
| silence_start, clip_start = None, 0 | |
| for i, rms in enumerate(rms_list): | |
| if rms < self.threshold: | |
| if silence_start is None: silence_start = i | |
| continue | |
| if silence_start is None: continue | |
| is_leading_silence = silence_start == 0 and i > self.max_sil_kept | |
| need_slice_middle = (i - silence_start >= self.min_interval and i - clip_start >= self.min_length) | |
| if not is_leading_silence and not need_slice_middle: | |
| silence_start = None | |
| continue | |
| if i - silence_start <= self.max_sil_kept: | |
| pos = rms_list[silence_start : i + 1].argmin() + silence_start | |
| sil_tags.append((0, pos) if silence_start == 0 else (pos, pos)) | |
| clip_start = pos | |
| elif i - silence_start <= self.max_sil_kept * 2: | |
| pos = rms_list[i - self.max_sil_kept : silence_start + self.max_sil_kept + 1].argmin() | |
| pos += i - self.max_sil_kept | |
| pos_r = (rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept) | |
| if silence_start == 0: | |
| sil_tags.append((0, pos_r)) | |
| clip_start = pos_r | |
| else: | |
| sil_tags.append((min((rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start), pos), max(pos_r, pos))) | |
| clip_start = max(pos_r, pos) | |
| else: | |
| pos_r = (rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept) | |
| sil_tags.append((0, pos_r) if silence_start == 0 else ((rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start), pos_r)) | |
| clip_start = pos_r | |
| silence_start = None | |
| total_frames = rms_list.shape[0] | |
| if (silence_start is not None and total_frames - silence_start >= self.min_interval): sil_tags.append((rms_list[silence_start : min(total_frames, silence_start + self.max_sil_kept) + 1].argmin() + silence_start, total_frames + 1)) | |
| if not sil_tags: return [waveform] | |
| else: | |
| chunks = [] | |
| if sil_tags[0][0] > 0: chunks.append(self._apply_slice(waveform, 0, sil_tags[0][0])) | |
| for i in range(len(sil_tags) - 1): | |
| chunks.append(self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0])) | |
| if sil_tags[-1][1] < total_frames: chunks.append(self._apply_slice(waveform, sil_tags[-1][1], total_frames)) | |
| return chunks | |
| class Slicer2(Slicer): | |
| def slice2(self, waveform): | |
| samples = waveform.mean(axis=0) if len(waveform.shape) > 1 else waveform | |
| if samples.shape[0] <= self.min_length: return [(waveform, 0, samples.shape[0])] | |
| rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0) | |
| sil_tags = [] | |
| silence_start, clip_start = None, 0 | |
| for i, rms in enumerate(rms_list): | |
| if rms < self.threshold: | |
| if silence_start is None: silence_start = i | |
| continue | |
| if silence_start is None: continue | |
| is_leading_silence = silence_start == 0 and i > self.max_sil_kept | |
| need_slice_middle = (i - silence_start >= self.min_interval and i - clip_start >= self.min_length) | |
| if not is_leading_silence and not need_slice_middle: | |
| silence_start = None | |
| continue | |
| if i - silence_start <= self.max_sil_kept: | |
| pos = rms_list[silence_start : i + 1].argmin() + silence_start | |
| sil_tags.append((0, pos) if silence_start == 0 else (pos, pos)) | |
| clip_start = pos | |
| elif i - silence_start <= self.max_sil_kept * 2: | |
| pos = rms_list[i - self.max_sil_kept : silence_start + self.max_sil_kept + 1].argmin() | |
| pos += i - self.max_sil_kept | |
| pos_r = (rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept) | |
| if silence_start == 0: | |
| sil_tags.append((0, pos_r)) | |
| clip_start = pos_r | |
| else: | |
| sil_tags.append((min((rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start), pos), max(pos_r, pos))) | |
| clip_start = max(pos_r, pos) | |
| else: | |
| pos_r = (rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept) | |
| sil_tags.append((0, pos_r) if silence_start == 0 else ((rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start), pos_r)) | |
| clip_start = pos_r | |
| silence_start = None | |
| total_frames = rms_list.shape[0] | |
| if (silence_start is not None and total_frames - silence_start >= self.min_interval): sil_tags.append((rms_list[silence_start : min(total_frames, silence_start + self.max_sil_kept) + 1].argmin() + silence_start, total_frames + 1)) | |
| if not sil_tags: return [(waveform, 0, samples.shape[-1])] | |
| else: | |
| chunks = [] | |
| if sil_tags[0][0] > 0: chunks.append((self._apply_slice(waveform, 0, sil_tags[0][0]), 0, sil_tags[0][0] * self.hop_size)) | |
| for i in range(len(sil_tags) - 1): | |
| chunks.append((self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]), sil_tags[i][1] * self.hop_size, sil_tags[i + 1][0] * self.hop_size)) | |
| if sil_tags[-1][1] < total_frames: chunks.append((self._apply_slice(waveform, sil_tags[-1][1], total_frames), sil_tags[-1][1] * self.hop_size, samples.shape[-1])) | |
| return chunks | |
| def get_rms(y, frame_length=2048, hop_length=512, pad_mode="constant"): | |
| y = np.pad(y, (int(frame_length // 2), int(frame_length // 2)), mode=pad_mode) | |
| axis = -1 | |
| x_shape_trimmed = list(y.shape) | |
| x_shape_trimmed[axis] -= frame_length - 1 | |
| xw = np.moveaxis(np.lib.stride_tricks.as_strided(y, shape=tuple(x_shape_trimmed) + tuple([frame_length]), strides=y.strides + tuple([y.strides[axis]])), -1, axis - 1 if axis < 0 else axis + 1) | |
| slices = [slice(None)] * xw.ndim | |
| slices[axis] = slice(0, None, hop_length) | |
| return np.sqrt(np.mean(np.abs(xw[tuple(slices)]) ** 2, axis=-2, keepdims=True)) | |
| def cut(audio, sr, db_thresh=-60, min_interval=250): | |
| slicer = Slicer2(sr=sr, threshold=db_thresh, min_interval=min_interval) | |
| return slicer.slice2(audio) | |
| def restore(segments, total_len, dtype=np.float32): | |
| out = [] | |
| last_end = 0 | |
| for start, end, processed_seg in segments: | |
| if start > last_end: out.append(np.zeros(start - last_end, dtype=dtype)) | |
| out.append(processed_seg) | |
| last_end = end | |
| if last_end < total_len: out.append(np.zeros(total_len - last_end, dtype=dtype)) | |
| return np.concatenate(out, axis=-1) |