Spaces:
Runtime error
Runtime error
import subprocess | |
import sys | |
# def install(package): | |
# subprocess.check_call([sys.executable, "-m", "pip", "install", package]) | |
# install("evaluate") | |
# install("jiwer") | |
# install("huggingface_hub") | |
# install("gradio") | |
# install("bitsandbytes") | |
# install("git+https://github.com/huggingface/transformers.git") | |
# install("git+https://github.com/huggingface/peft.git") | |
# install("git+https://github.com/huggingface/accelerate.git") | |
# install("einops") | |
# install("safetensors") | |
# install("torch") | |
# install("xformers") | |
# install("datasets") | |
from transformers import AutoProcessor, AutoModelForCausalLM, BitsAndBytesConfig | |
import torch | |
from PIL import Image | |
import requests | |
import traceback | |
class Image2Text: | |
def __init__(self): | |
# Load the GIT coco model | |
preprocessor_git_large_coco = AutoProcessor.from_pretrained("microsoft/git-large-coco") | |
model_git_large_coco = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco") | |
self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
self.preprocessor = preprocessor_git_large_coco | |
self.model = model_git_large_coco | |
self.model.to(self.device) | |
def image_description( | |
self, | |
image_url, | |
max_length=50, | |
temperature=0.1, | |
use_sample_image=False, | |
): | |
""" | |
Generate captions for the given image. | |
----- | |
Parameters | |
image_url: Image URL | |
The image to generate captions for. | |
max_length: int | |
The max length of the generated descriptions. | |
----- | |
Returns | |
str | |
The generated image description. | |
""" | |
caption_git_large_coco = "" | |
if use_sample_image: | |
image_url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
image = Image.open(requests.get(image_url, stream=True).raw) | |
# Generate captions for the image using the GIT coco model | |
try: | |
caption_git_large_coco = self._generate_description(image, max_length, False).strip() | |
return caption_git_large_coco | |
except Exception as e: | |
print(e) | |
traceback.print_exc() | |
def _generate_description( | |
self, | |
image, | |
max_length=50, | |
use_float_16=False, | |
): | |
""" | |
Generate captions for the given image. | |
----- | |
Parameters | |
image: PIL.Image | |
The image to generate captions for. | |
max_length: int | |
The max length of the generated descriptions. | |
use_float_16: bool | |
Whether to use float16 precision. This can speed up inference, but may lead to worse results. | |
----- | |
Returns | |
str | |
The generated caption. | |
""" | |
# inputs = preprocessor(image, return_tensors="pt").to(device) | |
pixel_values = self.preprocessor(images=image, return_tensors="pt").pixel_values.to(self.device) | |
generated_ids = self.model.generate( | |
pixel_values=pixel_values, | |
max_length=max_length, | |
) | |
generated_caption = self.preprocessor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return generated_caption | |
import json | |
import os | |
from pprint import pprint | |
import bitsandbytes as bnb | |
import pandas as pd | |
import torch | |
import torch.nn as nn | |
import transformers | |
from datasets import load_dataset | |
from huggingface_hub import notebook_login | |
from peft import ( | |
LoraConfig , | |
PeftConfig , | |
PeftModel , | |
get_peft_model , | |
prepare_model_for_kbit_training, | |
) | |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoConfig | |
from peft import LoraConfig, get_peft_model | |
os.environ["CUDA_VISIBLE_DEVICES"] = "0" | |
class Social_Media_Captioner: | |
def __init__(self, use_finetuned: bool=True, temp=0.1): | |
self.use_finetuned = use_finetuned | |
self.MODEL_NAME = "vilsonrodrigues/falcon-7b-instruct-sharded" | |
self.peft_model_name = "ayush-vatsal/caption_qlora_finetune" | |
self.model_loaded = False | |
self.device = "cuda:0" | |
self._load_model() | |
self.generation_config = self.model.generation_config | |
self.generation_config.max_new_tokens = 50 | |
self.generation_config.temperature = temp | |
self.generation_config.top_p = 0.7 | |
self.generation_config.num_return_sequences = 1 | |
self.generation_config.pad_token_id = self.tokenizer.eos_token_id | |
self.generation_config.eos_token_id = self.tokenizer.eos_token_id | |
self.cache: list[dict] = [] # [{"image_decription": "A man", "caption": ["A man"]}] | |
def _load_model(self): | |
try: | |
self.bnb_config = BitsAndBytesConfig( | |
load_in_4bit = True, | |
bnb_4bit_use_double_quant = True, | |
bnb_4bit_quant_type= "nf4", | |
bnb_4bit_compute_dtype=torch.bfloat16, | |
) | |
self.model = AutoModelForCausalLM.from_pretrained( | |
self.MODEL_NAME, | |
device_map = "auto", | |
trust_remote_code = True, | |
quantization_config = self.bnb_config | |
) | |
# Defining the tokenizers | |
self.tokenizer = AutoTokenizer.from_pretrained(self.MODEL_NAME) | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
if self.use_finetuned: | |
# LORA Config Model | |
self.lora_config = LoraConfig( | |
r=16, | |
lora_alpha=32, | |
target_modules=["query_key_value"], | |
lora_dropout=0.05, | |
bias="none", | |
task_type="CAUSAL_LM" | |
) | |
self.model = get_peft_model(self.model, self.lora_config) | |
# Fitting the adapters | |
self.peft_config = PeftConfig.from_pretrained(self.peft_model_name) | |
self.model = AutoModelForCausalLM.from_pretrained( | |
self.peft_config.base_model_name_or_path, | |
return_dict = True, | |
quantization_config = self.bnb_config, | |
device_map= "auto", | |
trust_remote_code = True | |
) | |
self.model = PeftModel.from_pretrained(self.model, self.peft_model_name) | |
# Defining the tokenizers | |
self.tokenizer = AutoTokenizer.from_pretrained(self.peft_config.base_model_name_or_path) | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
self.model_loaded = True | |
print("Model Loaded successfully") | |
except Exception as e: | |
print(e) | |
self.model_loaded = False | |
def inference(self, input_text: str, use_cached=True, cache_generation=True) -> str | None: | |
if not self.model_loaded: | |
raise Exception("Model not loaded") | |
try: | |
prompt = Social_Media_Captioner._prompt(input_text) | |
if use_cached: | |
for item in self.cache: | |
if item['image_description'] == input_text: | |
return item['caption'] | |
encoding = self.tokenizer(prompt, return_tensors = "pt").to(self.device) | |
with torch.inference_mode(): | |
outputs = self.model.generate( | |
input_ids = encoding.input_ids, | |
attention_mask = encoding.attention_mask, | |
generation_config = self.generation_config | |
) | |
generated_caption = (self.tokenizer.decode(outputs[0], skip_special_tokens=True).split('Caption: "')[-1]).split('"')[0] | |
if cache_generation: | |
for item in self.cache: | |
if item['image_description'] == input_text: | |
item['caption'].append(generated_caption) | |
break | |
else: | |
self.cache.append({ | |
'image_description': input_text, | |
'caption': [generated_caption] | |
}) | |
return generated_caption | |
except Exception as e: | |
print(e) | |
return None | |
def _prompt(input_text="A man walking alone in the road"): | |
if input_text is None: | |
raise Exception("Enter a valid input text to generate a valid prompt") | |
return f""" | |
Convert the given image description to social media worthy metaphoric caption | |
Description: {input_text} | |
Caption: | |
""".strip() | |
def get_trainable_parameters(model): | |
trainable_params = 0 | |
all_param = 0 | |
for _, param in model.named_parameters(): | |
all_param += param.numel() | |
if param.requires_grad: | |
trainable_params += param.numel() | |
return f"trainable_params: {trainable_params} || all_params: {all_param} || Percentage of trainable params: {100*trainable_params / all_param}" | |
def __repr__(self): | |
return f""" | |
Base Model Name: {self.MODEL_NAME} | |
PEFT Model Name: {self.peft_model_name} | |
Using PEFT Finetuned Model: {self.use_finetuned} | |
Model: {self.model} | |
------------------------------------------------------------ | |
{Social_Media_Captioner.get_trainable_parameters(self.model)} | |
""" | |
class Captions: | |
def __init__(self, use_finetuned_LLM: bool=True, temp_LLM=0.1): | |
self.image_to_text = Image2Text() | |
self.LLM = Social_Media_Captioner(use_finetuned_LLM, temp_LLM) | |
def generate_captions( | |
self, | |
image, | |
image_url=None, | |
max_length_GIT=50, | |
temperature_GIT=0.1, | |
use_sample_image_GIT=False, | |
use_cached_LLM=True, | |
cache_generation_LLM=True | |
): | |
if image_url: | |
image_description = self.image_to_text.image_description(image_url, max_length=max_length_GIT, temperature=temperature_GIT, use_sample_image=use_sample_image_GIT) | |
else: | |
image_description = self.image_to_text._generate_description(image, max_length=max_length_GIT) | |
captions = self.LLM.inference(image_description, use_cached=use_cached_LLM, cache_generation=cache_generation_LLM) | |
return captions | |
caption_generator = Captions() | |
import gradio as gr | |
def setup(image): | |
# Assuming `caption_generator.generate_captions` is your function to generate captions. | |
# This is just a placeholder for your actual caption generation logic. | |
return caption_generator.generate_captions(image = image) | |
iface = gr.Interface( | |
fn=setup, | |
inputs=gr.Image(type="pil", label="Upload Image"), # Updated usage here | |
outputs="text" # Simplified usage here | |
) | |
iface.launch() | |