Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,11 +4,63 @@ import os
|
|
4 |
import string
|
5 |
import re
|
6 |
import torch
|
7 |
-
from transformers import pipeline
|
8 |
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
|
9 |
import fasttext
|
10 |
from huggingface_hub import hf_hub_download
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
model_path = hf_hub_download(repo_id="cis-lmu/glotlid", filename="model.bin")
|
14 |
identification_model = fasttext.load_model(model_path)
|
@@ -172,20 +224,33 @@ def print_s(source_lang, target_lang, text0):
|
|
172 |
demo = gr.Blocks()
|
173 |
|
174 |
with demo:
|
175 |
-
gr.Markdown("Speech analyzer")
|
176 |
-
audio = gr.Audio(type="filepath", label = "Upload a file")
|
177 |
text0 = gr.Textbox()
|
178 |
text = gr.Textbox()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
source_lang = gr.Dropdown(label="Source lang", choices=list(lang_id.keys()), value=list(lang_id.keys())[0])
|
180 |
target_lang = gr.Dropdown(label="target lang", choices=list(lang_id.keys()), value=list(lang_id.keys())[0])
|
181 |
|
182 |
#gr.Examples(examples = list(lang_id.keys()),
|
183 |
# inputs=[
|
184 |
# source_lang])
|
185 |
-
b1 = gr.Button("convert to text")
|
186 |
b3 = gr.Button("translate")
|
187 |
b3.click(translation_text, inputs = [source_lang, target_lang, text0], outputs = text)
|
188 |
-
b1.click(audio_a_text, inputs=audio, outputs=text)
|
189 |
|
190 |
b2 = gr.Button("Classification of language")
|
191 |
b2.click(lang_ident,inputs = text0, outputs=text)
|
|
|
4 |
import string
|
5 |
import re
|
6 |
import torch
|
7 |
+
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer, AutoConfig
|
8 |
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
|
9 |
import fasttext
|
10 |
from huggingface_hub import hf_hub_download
|
11 |
|
12 |
+
summarization_model_names = [
|
13 |
+
"google/bigbird-pegasus-large-arxiv",
|
14 |
+
"facebook/bart-large-cnn",
|
15 |
+
"google/t5-v1_1-large",
|
16 |
+
"sshleifer/distilbart-cnn-12-6",
|
17 |
+
"allenai/led-base-16384",
|
18 |
+
"google/pegasus-xsum",
|
19 |
+
"togethercomputer/LLaMA-2-7B-32K"
|
20 |
+
]
|
21 |
+
|
22 |
+
# Placeholder for the summarizer pipeline, tokenizer, and maximum tokens
|
23 |
+
summarizer = None
|
24 |
+
tokenizer = None
|
25 |
+
max_tokens = None
|
26 |
+
|
27 |
+
|
28 |
+
# Function to load the selected model
|
29 |
+
def load_summarization_model(model_name):
|
30 |
+
global summarizer, tokenizer, max_tokens
|
31 |
+
try:
|
32 |
+
summarizer = pipeline("summarization", model=model_name, torch_dtype=torch.bfloat16)
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
34 |
+
config = AutoConfig.from_pretrained(model_name)
|
35 |
+
|
36 |
+
if max_tokens = config.max_position_embeddings
|
37 |
+
elif hasattr(config, 'n_positions'):
|
38 |
+
max_tokens = config.n_positions
|
39 |
+
elif hasattr(config, 'd_model'):
|
40 |
+
max_tokens = config.d_model # for T5 models, d_model is a rough proxy
|
41 |
+
else:
|
42 |
+
max_tokens = "Unknown"
|
43 |
+
|
44 |
+
return f"Model {model_name} loaded successfully! Max tokens: {max_tokens}"
|
45 |
+
except Exception as e:
|
46 |
+
return f"Failed to load model {model_name}. Error: {str(e)}"
|
47 |
+
|
48 |
+
|
49 |
+
def summarize_text(input, min_length, max_length):
|
50 |
+
if summarizer is None:
|
51 |
+
return "No model loaded!"
|
52 |
+
|
53 |
+
input_tokens = tokenizer.encode(input, return_tensors="pt")
|
54 |
+
num_tokens = input_tokens.shape[1]
|
55 |
+
if num_tokens > max_tokens:
|
56 |
+
return f"Error: The input text has {num_tokens} tokens, which exceeds the maximum allowed {max_tokens} tokens. Please enter shorter text."
|
57 |
+
|
58 |
+
min_summary_length = int(num_tokens * (min_length / 100))
|
59 |
+
max_summary_length = int(num_tokens * (max_length / 100))
|
60 |
+
|
61 |
+
output = summarizer(input, min_length=min_summary_length, max_length=max_summary_length)
|
62 |
+
return output[0]['summary_text']
|
63 |
+
|
64 |
|
65 |
model_path = hf_hub_download(repo_id="cis-lmu/glotlid", filename="model.bin")
|
66 |
identification_model = fasttext.load_model(model_path)
|
|
|
224 |
demo = gr.Blocks()
|
225 |
|
226 |
with demo:
|
|
|
|
|
227 |
text0 = gr.Textbox()
|
228 |
text = gr.Textbox()
|
229 |
+
#gr.Markdown("Speech analyzer")
|
230 |
+
#audio = gr.Audio(type="filepath", label = "Upload a file")
|
231 |
+
model_dropdown = gr.Dropdown(choices=model_names, label="Choose a model", value="sshleifer/distilbart-cnn-12-6")
|
232 |
+
load_message = gr.Textbox(label="Load Status", interactive=False)
|
233 |
+
b1 = gr.Button("Load Model")
|
234 |
+
min_length_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Minimum Summary Length (%)", value=10)
|
235 |
+
max_length_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Maximum Summary Length (%)", value=20)
|
236 |
+
|
237 |
+
summarize_button = gr.Button("Summarize Text")
|
238 |
+
|
239 |
+
b1.click(fn=load_model, inputs=model_dropdown, outputs=load_message)
|
240 |
+
summarize_button.click(fn=summarize_text, inputs=[text0, min_length_slider, max_length_slider],
|
241 |
+
outputs=text)
|
242 |
+
|
243 |
+
|
244 |
source_lang = gr.Dropdown(label="Source lang", choices=list(lang_id.keys()), value=list(lang_id.keys())[0])
|
245 |
target_lang = gr.Dropdown(label="target lang", choices=list(lang_id.keys()), value=list(lang_id.keys())[0])
|
246 |
|
247 |
#gr.Examples(examples = list(lang_id.keys()),
|
248 |
# inputs=[
|
249 |
# source_lang])
|
250 |
+
#b1 = gr.Button("convert to text")
|
251 |
b3 = gr.Button("translate")
|
252 |
b3.click(translation_text, inputs = [source_lang, target_lang, text0], outputs = text)
|
253 |
+
#b1.click(audio_a_text, inputs=audio, outputs=text)
|
254 |
|
255 |
b2 = gr.Button("Classification of language")
|
256 |
b2.click(lang_ident,inputs = text0, outputs=text)
|