Spaces:
Runtime error
Runtime error
import torch | |
from torch import nn | |
from argparse import Namespace | |
import torch.nn.functional as F | |
from transformers.activations import ACT2FN | |
import math | |
from torch.nn import LayerNorm | |
def standard_attention(query_layer, key_layer, value_layer, scaling_attention_score=True): | |
if scaling_attention_score: | |
query_layer = query_layer / math.sqrt(query_layer.shape[-1]) | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
attention_probs = F.softmax(attention_scores, dim=-1) | |
context_layer = torch.matmul(attention_probs, value_layer) | |
return context_layer | |
def attention_fn_default(query_layer, key_layer, value_layer, scaling_attention_score=True): | |
if int(torch.__version__.split('.')[0]) >= 2 and scaling_attention_score: | |
# Pytorch 2.0 attention uses very much memory if attention_mask is float, and has NaN bug if attention_mask is None. | |
attn_output = torch.nn.functional.scaled_dot_product_attention( | |
query_layer, key_layer, value_layer, | |
attn_mask=None, | |
dropout_p=0., | |
is_causal=False | |
) | |
return attn_output | |
else: | |
return standard_attention( | |
query_layer, key_layer, value_layer, scaling_attention_score=scaling_attention_score | |
) | |
class PatchEmbedding(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.proj = nn.Conv2d(config.in_channels, config.hidden_size, kernel_size=config.patch_size, stride=config.patch_size) | |
self.cls_embedding = nn.Parameter(torch.zeros(1, config.hidden_size)) | |
self.position_embedding = nn.Embedding(config.num_positions, config.hidden_size) | |
def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)": | |
x = self.proj(images) | |
x = x.flatten(2).transpose(1, 2) | |
cls_token = self.cls_embedding.expand(x.shape[0], -1, -1) | |
x = torch.cat((cls_token, x), dim=1) | |
x += self.position_embedding.weight.unsqueeze(0) | |
return x | |
class Attention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.num_heads = config.num_heads | |
head_dim = config.hidden_size // config.num_heads | |
self.scale = head_dim ** -0.5 | |
self.query_key_value = nn.Linear(config.hidden_size, config.hidden_size * 3) | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.output_dropout = torch.nn.Dropout(config.dropout_prob) | |
def forward(self, x: "tensor(B, L, D)") -> "tensor(B, L, D)": | |
B, L, _ = x.shape | |
qkv = self.query_key_value(x) | |
qkv = qkv.reshape(B, L, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, H, L, D | |
q, k, v = qkv[0], qkv[1], qkv[2] | |
out = attention_fn_default( | |
q, k, v | |
) | |
output = self.dense(out.transpose(1, 2).reshape(B, L, -1)) | |
output = self.output_dropout(output) | |
return output | |
def attention(self, q, k, v): | |
attn_weights = torch.matmul(q * self.scale, k.transpose(-2, -1)) | |
attn_weights = attn_weights.softmax(dim=-1) | |
output = torch.matmul(attn_weights, v) | |
return output | |
class MLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.activation_fn = ACT2FN[config.hidden_act] | |
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | |
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.fc1(x) | |
x = self.activation_fn(x) | |
x = self.fc2(x) | |
return x | |
class TransformerLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.input_layernorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.attention = Attention(config) | |
self.mlp = MLP(config) | |
self.post_attention_layernorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward(self, hidden_states): | |
attention_input = hidden_states | |
attention_output = self.input_layernorm(self.attention(attention_input)) | |
hidden_states = attention_input + attention_output | |
mlp_input = hidden_states | |
mlp_output = self.post_attention_layernorm(self.mlp(mlp_input)) | |
output = mlp_input + mlp_output | |
return output | |
class Transformer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.layers = nn.ModuleList([TransformerLayer(config) for _ in range(config.num_hidden_layers)]) | |
def forward(self, hidden_states): | |
for layer_module in self.layers: | |
hidden_states = layer_module(hidden_states) | |
return hidden_states | |
class GLU(nn.Module): | |
def __init__(self, config, in_features): | |
super().__init__() | |
self.linear_proj = nn.Linear(in_features, config.hidden_size, bias=False) | |
self.norm1 = nn.LayerNorm(config.hidden_size) | |
self.act1 = nn.GELU() | |
self.act2 = nn.functional.silu | |
self.dense_h_to_4h = nn.Linear(config.hidden_size, config.ffn_hidden_size, bias=False) | |
self.gate_proj = nn.Linear(config.hidden_size, config.ffn_hidden_size, bias=False) | |
self.dense_4h_to_h = nn.Linear(config.ffn_hidden_size, config.hidden_size, bias=False) | |
def forward(self, x): | |
x = self.linear_proj(x) | |
x = self.act1(self.norm1(x)) | |
x = self.act2(self.gate_proj(x)) * self.dense_h_to_4h(x) | |
x = self.dense_4h_to_h(x) | |
return x | |
class EVA2CLIPModel(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
vision_config = Namespace(**config.vision_config) | |
self.patch_embedding = PatchEmbedding(vision_config) | |
self.transformer = Transformer(vision_config) | |
self.linear_proj = GLU(config, in_features=config.hidden_size) | |
self.conv = nn.Conv2d(in_channels=vision_config.hidden_size, out_channels=config.hidden_size, kernel_size=2, stride=2) | |
self.boi = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) | |
self.eoi = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) | |
self.scaling_factor = vision_config.scaling_factor | |
def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)": | |
x = self.patch_embedding(images) | |
x = self.transformer(x) | |
x = x[:, 1:] | |
b, s, h = x.shape | |
grid_size = int(s**0.5) | |
x = x.view(b, grid_size, grid_size, h).permute(0, 3, 1, 2) | |
x = self.conv(x) | |
x = x.flatten(2).transpose(1, 2) | |
x = self.linear_proj(x) | |
boi = self.boi.expand(x.shape[0], -1, -1) | |
eoi = self.eoi.expand(x.shape[0], -1, -1) | |
x = torch.cat((boi, x, eoi), dim=1) | |
x = x / self.scaling_factor | |
return x | |