Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
class Attention(nn.Module): | |
def __init__(self, input_size, hidden_size, num_classes): | |
super(Attention, self).__init__() | |
self.attention_cell = AttentionCell(input_size, hidden_size, num_classes) | |
self.hidden_size = hidden_size | |
self.num_classes = num_classes | |
self.generator = nn.Linear(hidden_size, num_classes) | |
def _char_to_onehot(self, input_char, onehot_dim=38): | |
input_char = input_char.unsqueeze(1) | |
batch_size = input_char.size(0) | |
one_hot = torch.FloatTensor(batch_size, onehot_dim).zero_().to(device) | |
one_hot = one_hot.scatter_(1, input_char, 1) | |
return one_hot | |
def forward(self, batch_H, text, is_train=True, batch_max_length=25): | |
""" | |
input: | |
batch_H : contextual_feature H = hidden state of encoder. [batch_size x num_steps x contextual_feature_channels] | |
text : the text-index of each image. [batch_size x (max_length+1)]. +1 for [GO] token. text[:, 0] = [GO]. | |
output: probability distribution at each step [batch_size x num_steps x num_classes] | |
""" | |
batch_size = batch_H.size(0) | |
num_steps = batch_max_length + 1 # +1 for [s] at end of sentence. | |
output_hiddens = torch.FloatTensor(batch_size, num_steps, self.hidden_size).fill_(0).to(device) | |
hidden = (torch.FloatTensor(batch_size, self.hidden_size).fill_(0).to(device), | |
torch.FloatTensor(batch_size, self.hidden_size).fill_(0).to(device)) | |
if is_train: | |
for i in range(num_steps): | |
# one-hot vectors for a i-th char. in a batch | |
char_onehots = self._char_to_onehot(text[:, i], onehot_dim=self.num_classes) | |
# hidden : decoder's hidden s_{t-1}, batch_H : encoder's hidden H, char_onehots : one-hot(y_{t-1}) | |
hidden, alpha = self.attention_cell(hidden, batch_H, char_onehots) | |
output_hiddens[:, i, :] = hidden[0] # LSTM hidden index (0: hidden, 1: Cell) | |
probs = self.generator(output_hiddens) | |
else: | |
targets = torch.LongTensor(batch_size).fill_(0).to(device) # [GO] token | |
probs = torch.FloatTensor(batch_size, num_steps, self.num_classes).fill_(0).to(device) | |
for i in range(num_steps): | |
char_onehots = self._char_to_onehot(targets, onehot_dim=self.num_classes) | |
hidden, alpha = self.attention_cell(hidden, batch_H, char_onehots) | |
probs_step = self.generator(hidden[0]) | |
probs[:, i, :] = probs_step | |
_, next_input = probs_step.max(1) | |
targets = next_input | |
return probs # batch_size x num_steps x num_classes | |
class AttentionCell(nn.Module): | |
def __init__(self, input_size, hidden_size, num_embeddings): | |
super(AttentionCell, self).__init__() | |
self.i2h = nn.Linear(input_size, hidden_size, bias=False) | |
self.h2h = nn.Linear(hidden_size, hidden_size) # either i2i or h2h should have bias | |
self.score = nn.Linear(hidden_size, 1, bias=False) | |
self.rnn = nn.LSTMCell(input_size + num_embeddings, hidden_size) | |
self.hidden_size = hidden_size | |
def forward(self, prev_hidden, batch_H, char_onehots): | |
# [batch_size x num_encoder_step x num_channel] -> [batch_size x num_encoder_step x hidden_size] | |
batch_H_proj = self.i2h(batch_H) | |
prev_hidden_proj = self.h2h(prev_hidden[0]).unsqueeze(1) | |
e = self.score(torch.tanh(batch_H_proj + prev_hidden_proj)) # batch_size x num_encoder_step * 1 | |
alpha = F.softmax(e, dim=1) | |
context = torch.bmm(alpha.permute(0, 2, 1), batch_H).squeeze(1) # batch_size x num_channel | |
concat_context = torch.cat([context, char_onehots], 1) # batch_size x (num_channel + num_embedding) | |
cur_hidden = self.rnn(concat_context, prev_hidden) | |
return cur_hidden, alpha | |