Spaces:
Runtime error
Runtime error
""" | |
Copyright (c) 2019-present NAVER Corp. | |
Licensed under the Apache License, Version 2.0 (the "License"); | |
you may not use this file except in compliance with the License. | |
You may obtain a copy of the License at | |
http://www.apache.org/licenses/LICENSE-2.0 | |
Unless required by applicable law or agreed to in writing, software | |
distributed under the License is distributed on an "AS IS" BASIS, | |
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
See the License for the specific language governing permissions and | |
limitations under the License. | |
""" | |
import torch.nn as nn | |
from modules.transformation import TPS_SpatialTransformerNetwork | |
from modules.feature_extraction import VGG_FeatureExtractor, RCNN_FeatureExtractor, ResNet_FeatureExtractor | |
from modules.sequence_modeling import BidirectionalLSTM | |
from modules.prediction import Attention | |
class Model(nn.Module): | |
def __init__(self, opt): | |
super(Model, self).__init__() | |
self.opt = opt | |
self.stages = {'Trans': opt.Transformation, 'Feat': opt.FeatureExtraction, | |
'Seq': opt.SequenceModeling, 'Pred': opt.Prediction} | |
""" Transformation """ | |
if opt.Transformation == 'TPS': | |
self.Transformation = TPS_SpatialTransformerNetwork( | |
F=opt.num_fiducial, I_size=(opt.imgH, opt.imgW), I_r_size=(opt.imgH, opt.imgW), I_channel_num=opt.input_channel) | |
else: | |
print('No Transformation module specified') | |
""" FeatureExtraction """ | |
if opt.FeatureExtraction == 'VGG': | |
self.FeatureExtraction = VGG_FeatureExtractor(opt.input_channel, opt.output_channel) | |
elif opt.FeatureExtraction == 'RCNN': | |
self.FeatureExtraction = RCNN_FeatureExtractor(opt.input_channel, opt.output_channel) | |
elif opt.FeatureExtraction == 'ResNet': | |
self.FeatureExtraction = ResNet_FeatureExtractor(opt.input_channel, opt.output_channel) | |
else: | |
raise Exception('No FeatureExtraction module specified') | |
self.FeatureExtraction_output = opt.output_channel # int(imgH/16-1) * 512 | |
self.AdaptiveAvgPool = nn.AdaptiveAvgPool2d((None, 1)) # Transform final (imgH/16-1) -> 1 | |
""" Sequence modeling""" | |
if opt.SequenceModeling == 'BiLSTM': | |
self.SequenceModeling = nn.Sequential( | |
BidirectionalLSTM(self.FeatureExtraction_output, opt.hidden_size, opt.hidden_size), | |
BidirectionalLSTM(opt.hidden_size, opt.hidden_size, opt.hidden_size)) | |
self.SequenceModeling_output = opt.hidden_size | |
else: | |
print('No SequenceModeling module specified') | |
self.SequenceModeling_output = self.FeatureExtraction_output | |
""" Prediction """ | |
if opt.Prediction == 'CTC': | |
self.Prediction = nn.Linear(self.SequenceModeling_output, opt.num_class) | |
elif opt.Prediction == 'Attn': | |
self.Prediction = Attention(self.SequenceModeling_output, opt.hidden_size, opt.num_class) | |
else: | |
raise Exception('Prediction is neither CTC or Attn') | |
def forward(self, input, text, is_train=True): | |
""" Transformation stage """ | |
if not self.stages['Trans'] == "None": | |
input = self.Transformation(input) | |
""" Feature extraction stage """ | |
visual_feature = self.FeatureExtraction(input) | |
visual_feature = self.AdaptiveAvgPool(visual_feature.permute(0, 3, 1, 2)) # [b, c, h, w] -> [b, w, c, h] | |
visual_feature = visual_feature.squeeze(3) | |
""" Sequence modeling stage """ | |
if self.stages['Seq'] == 'BiLSTM': | |
contextual_feature = self.SequenceModeling(visual_feature) | |
else: | |
contextual_feature = visual_feature # for convenience. this is NOT contextually modeled by BiLSTM | |
""" Prediction stage """ | |
if self.stages['Pred'] == 'CTC': | |
prediction = self.Prediction(contextual_feature.contiguous()) | |
else: | |
prediction = self.Prediction(contextual_feature.contiguous(), text, is_train, batch_max_length=self.opt.batch_max_length) | |
return prediction | |